
 
 
 

 
 
 

MORTALITY MODELS FOR PALEODEMOGRAPHY 
 
 
 
 

James W. Wood1 
Darryl J. Holman2 

Kathleen A. O’Connor2 
Rebecca J. Ferrell1 

 
 

 

 

 

 

1 Department of Anthropology and Population Research Institute 
Pennsylvania State University, University Park, PA, USA 

 
2 Department of Anthropology and Center for Studies in Demography and Ecology 

University of Washington, Seattle, WA, USA 
 
 



 1 

Introduction 

Population scientists concerned with long-term trends in human mortality ought to 

be interested in skeletal samples from extinct communities.  Such samples are, in 

principle, the only possible source of information for most preindustrial populations 

lacking written records – by far the most common kind of human community that has 

ever existed.  Samples of skeletons provide two broad classes of information of potential 

interest to demographers and other population specialists: frequency counts of bony 

lesions that may reveal something about pathological processes active in the population, 

and data on ages at death from which age patterns of mortality may be inferred.  Of these, 

the latter class of information has generally been deemed to be the less problematic.  It 

has been assumed that skeletal age at death can be estimated well enough, albeit with 

some inevitable degree of error, to support a few crude but revealing statistics such as 

mean age at death, life expectancies, and age-specific mortality rates.  And so for decades 

it has been considered perfectly acceptable to use skeletal data to compute life tables, the 

traditional demographic tool for investigating age patterns of mortality.  All that is 

needed, in this view, are a few simple modifications of standard life-table techniques, 

modifications that were laid down thirty years ago by Acsádi and Nemeskéri (1970:60-

65). 

Over the years, paleodemographers have computed innumerable life tables, and 

they continue to do so to this day (for a few examples, see Green et al. 1974; Lovejoy et 

al. 1977; Greene et al. 1986; Lanphear 1989; Mensforth 1990; Benedictow 1996:36-41; 

Alesan et al. 1999).  But the life-table approach, so long the mainstay of 

paleodemographic mortality analysis, is open to criticism on several grounds (Sattenspiel 

and Harpending 1983; Konigsberg and Frankenberg 1992, 1994; Milner et al. 2000).  

First, paleodemographic studies do not produce the kinds of data needed to compute life-

table mortality rates using standard methods – specifically, the numbers of deaths among 

people at each (known) age and the number of person-years of exposure to the risk of 

death at that age during some well-defined reference period.  Instead, paleodemographers 

have been forced to work with fuzzily-defined, error-prone distributions of purported 

ages at death, which can, under restrictive circumstances, be used to generate life tables – 
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if, that is, one is willing to use methods whose statistical properties are poorly 

characterized. 

Second, the life-table approach assumes that the target population being studied 

was stationary in the technical demographic sense of the term.  That is, it assumes that 

the population was closed to migration and had an intrinsic rate of increase equal to zero, 

age-specific schedules of fertility and mortality that were unchanging over time, and an 

equilibrium age distribution induced by those age-specific birth and death rates (Lotka 

1922).  Only in this special (and not necessarily realistic) case is the empirical age 

distribution of skeletons expected to have a simple, straightforward relationship to the 

cohort age-at-death column in the life table.  This problem was recognized by one of the 

earliest advocates of the paleodemographic life table (Angel 1969) and has been 

discussed in several more recent treatments (see, for example, Moore et al. 1975; 

Sattenspiel and Harpending 1983; Johannson and Horowitz 1986; Wood et al. 1992b; 

Konigsberg and Frankenberg 1994). 

Third, the use of fixed age intervals in the life table implies that the ages of all 

skeletons are known within the same margin of error, including those of fragmentary 

skeletons that exhibit only a few, unreliable indicators of age.  Thus, the life-table 

approach is unacceptably procrustean: it tries to force the complicated error structure of 

paleodemographic age estimates into a rigid framework of a few discrete age intervals. 

Fourth, and perhaps most seriously, the life table is a wasteful way to use the 

small samples typical of paleodemographic studies – samples that are often on the order 

of a few dozen or, at best, a few hundred skeletons.  In computing a life table we need to 

estimate one parameter (an age-specific mortality rate) for each and every age interval in 

the table, often requiring ten or more separate parameters to be estimated.  Few 

paleodemographic samples will support a method with such a gargantuan appetite for 

data. 

 For the past three decades, paleodemographers have attempted to circumvent 

some of these problems by using so-called model life tables (UN 1955, 1956; Coale and 

Demeny 1966; Weiss 1973).  In this approach, the investigator searches through 

published tabulations of theoretical age-specific mortality patterns to find an age-at-death 

distribution that appears to mimic the empirical distribution being studied.  In theory, this 
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approach allows the assumption of stationarity to be relaxed (Paine 1989).  In practice, 

however, the methods for fitting model life tables have been ad hoc and informal, and the 

results are only good if the published tabulations happen to include a table that 

corresponds closely to the population under study – something that is inherently 

untestable. 

The Rostock protocol outlined by Love and Müller (present volume) – and the 

earlier work of Konigsberg and Frankenberg (1992), which anticipates it (see also 

Konigsberg et al. 1997) – represents a major advance in our thinking about how to 

estimate mortality statistics from skeletal samples.  Under the Rostock protocol, we never 

compute a life table – although, as we show below, we can eventually compute 

something that looks like a life table if we so desire.  Indeed, we do not begin by 

classifying skeletons by age at all, as we would have to do in the life-table approach.  

Instead, we directly estimate the age pattern of death from the total sample of skeletons 

unclassified by age.  Using c to indicate a vector of observed skeletal traits that provide 

information about age at death, the probability of observing a particular c value – say, ci – 

out of the sample as a whole is the marginal density of ci: 
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Since Pr(ci) is the likelihood of observing a skeleton with characteristics ci in our sample, 

the likelihood function for the entire sample of n skeletons is 

 

 ∏ ∏∫
= =

∞

==
n

i

n

i
ii daaaccL

1 1 0

)Pr()|(Pr*)Pr( ,           (2) 

 

where the asterisk (*) denotes an empirical estimate from a reference sample of skeletons 

whose ages at death are known (see Usher, this volume).  The function Pr(a) is the age-

at-death distribution in the target sample whose mortality pattern we wish to estimate.  It 

is Pr(a) that tells us what we want to learn about mortality in the past.  And maximization 

of Equation (2) provides the basis for maximum likelihood estimates of the Pr(a) function 

from the target sample. 



 4 

If the Rostock protocol is to be used in paleodemographic research, we need to 

find a suitable parametric model for the age-at-death distribution Pr(a).  In other words, 

we need to boil all the complexities of age-specific mortality down to a single, more-or-

less simple set of equations – equations containing constants (known as parameters) 

whose values we hope to estimate from skeletal data.  Although some paleodemographers 

might balk at the notion of reducing all the manifold variability in human mortality to 

naked math, the parametric approach actually has a number of virtues for 

paleodemographic analysis.  As we show below, it allows us to correct for the 

confounding effects of non-stationarity – population growth or decline – on the age-at-

death distribution.  It also permits us to compare mortality patterns across populations in 

a straightforward way by examining parameter estimates and their associated standard 

errors.  And if we construct our parametric model wisely, it may even reveal something 

interesting about the biological processes underlying the human mortality curve. 

The parametric approach does, however, have one profound limitation: it is only 

as good as the model chosen for the age-at-death distribution.  In this paper, we review 

parametric models of human mortality with an eye toward identifying models that may be 

of use in paleodemographic estimation.  A secondary (but important) goal is to find 

models that facilitate etiologic ways of thinking about paleodemographic mortality 

profiles – that is, models that allow for some kind of meaningful biological interpretation 

and insight. We examine the etiologic foundations of current models and develop 

extensions that provide insights into the mortality processes experienced by past 

populations.  Finally, we discuss some important issues, including heterogeneity in the 

risk of death, non-stationarity, and the sex differential in mortality, that must be 

considered in reconstructing the demographic past. 

Before we go into the details of the alternative model specifications, it is worth 

asking what we are trying to accomplish in paleodemographic mortality analysis.  We 

also need to be honest about what we can never accomplish, even with the best skeletal 

samples imaginable.  Mainstream demographers often have the luxuries of huge samples, 

known ages, and information about specific causes of death (both primary and 

contributory).  They can justify using some very complicated models that at once require 

such data and take advantage of them (see, for example, Schoen 1975; Manton and 



 5 

Stallard 1988; Nam 1990).  As a result, they can examine the fine details of human 

mortality with comparative ease.  Paleodemographers do not have – and never will have 

– any of these luxuries.  Paleodemographic samples will almost always be small and 

subject to a number of unavoidable taphonomic biases (Gordon and Buikstra 1981; 

Waldron 1987; Walker et al. 1988; Mays 1992).  It is unreasonable, therefore, to expect 

that paleodemographers will ever be able to reconstruct the fine details of any set of 

mortality rates.  At best, we can hope to learn something about the overall level and age 

pattern of death in the distant past – and perhaps something about the gross differences in 

material conditions that led to variation in level and age pattern.  This fact places a limit 

on the kinds of models worthy of consideration by paleodemographers.  In general, 

simple models that reveal overall patterns are to be preferred over complicated models 

that purport to tell us about the detailed squiggles and bumps of the age-at-death curve.  It 

is on such simple models that we concentrate in this paper. 

 

What Exactly Do We Need to Model? 
 
 To implement the Rostock approach, we need to model Pr(a), the age-at-death 

distribution of the past population under study.  But what exactly is this distribution?  

And what is its relationship to the underlying age pattern of mortality?  Intuitively, it 

might seem as if the relationship has to be simple.  In fact it is complicated, and we need 

to be clear about it if we are to avoid going wrong. 

For simplicity, imagine that we observe all the deaths that occurred in a well-

defined population during some specified period of time, and that we know the exact age 

at which each and every death took place.  (Needless to say, we never have it so good in 

paleodemography; but for the moment we are interested in theory, not reality.)  How can 

we best characterize the age-specific mortality pattern of our ideal population in a formal 

statistical sense?  And how can we model that pattern mathematically?  Conceptually, if 

not computationally, it is simplest to begin with µ (a), the age-specific mortality rate at 

exact age a (normally measured in years).  If we treat age as a continuously varying 

quantity – and throughout this paper we will – then µ (a) is called the force of mortality 

(Keyfitz 1968:5) and is defined as 
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This function defines a rate that is strictly non-negative.  It can be thought of as the 

continuous-time analogue of the central mortality rate, the usual starting point for 

calculation of the life table.  But we cannot compute µ(a) directly from a 

paleodemographic age-at-death distribution (even if we know that distribution perfectly), 

so it behooves us to define some related functions.  One of these is the survival function, 

S(a), derived from the age-specific mortality function as 

 

  
∫

=
−

a

dxx

eaS 0

)(

)(
µ

.              (4) 

 

S(a) is the probability that an individual survives from birth to at least age a.  Since a 

cannot take on negative values, it follows that S(0) = 1.  In addition, S(a) is 

monotonically non-increasing with a, i.e. it can only go down (or remain the same) as age 

increases.  As a → ∞, S(a) approaches zero.  Thus, S(a) is analogous to the survivorship 

column in the life table in all its particulars, save that age is reckoned continuously rather 

than in discrete intervals. 

 We now inch our way toward something that starts to look like the 

paleodemographic age-at-death distribution Pr(a) – but, in most circumstances, is not 

equivalent to it.  This is the probability density function (PDF) of ages at death in a birth 

cohort of individuals subjected to the mortality function µ (a) at each age.  We will write 

this PDF as f0(a).  (The reason for the zero subscript will become clear presently.)  It can 

be derived from S(a) as 
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If we were dealing with skeletons from a single cohort, f0(a) would indeed be equivalent 

to Pr(a).  But such is never the case in paleodemography – and if, by some miracle, it 

were the case, we would never know it. 
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 According to some basic results from renewal theory (Cox 1962), the hazard, 

density, and survival functions are related to each other in the following ways: 
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The denominator in Equation (8) rescales f0(a) so that it behaves like a proper PDF and 

integrates to one.  These relationships will be useful at several points in the following 

discussion.  Because of these mathematical relationships, once we know one of these 

three functions, we can immediately determine the other two. 

 It is important to emphasize the parallels that exist between µ (a), S(a), and f0(a), 

on the one hand, and certain columns in the classic life table on the other.  We have 

already mentioned that µ (a) is analogous to the life-table central mortality rate, and S(a) 

to the survivorship schedule.  Similarly, f0(a) is analogous to the life-table (cohort) 

distribution of ages at death.  Other “life-table-like” functions can be derived from µ (a), 

S(a), or f0(a).  For example, µ (a) can be converted into an age-specific probability of 

death, q(a), during some small subinterval [a - ½ ∆a, a +  ½∆a] around a by solving 
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For µ(a) in the interval [0,∞), this expression constrains q(a) to fall between zero and 

one.  Another quantity related to µ(a), f0(a), and S(a) is the life expectancy or expected 

remaining life time for an individual alive at age a, 
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As these last two equations show, µ(a), f0(a), or S(a) can be used to derive all the 

information we would normally hope to learn from an old-fashioned life table without 

ever requiring us to compute one.  Or, rather, they would if only we could estimate them. 

 Which brings us back to the age-at-death distribution Pr(a) – the nearest we can 

get theoretically to paleodemographic data on skeletal age at death.  We have hinted that 

there is a close (if complicated) relationship between Pr(a) and f0(a), and it is now time to 

make that relationship explicit. 

As already noted, f0(a) is the age-at-death distribution of a single birth cohort 

exposed to the mortality function µ (a).  As it happens, it is also the expected age-at-death 

distribution for all the deaths occurring in a stationary population over some delimitable 

period of time – for example, the time span during which skeletons are deposited in a 

cemetery (see Appendix).  If we were sure that the population was stationary during the 

entire period of deposition, we could substitute Equation (8) into our likelihood function 

(Equation 2) and – once we have specified a parametric model for µ(a) and S(a) – 

maximize it to obtain parameter estimates.  But what if our target population was not 

stationary?  What, for example, if it was changing in size, no matter how slowly?  Then 

f0(a) is not the same as Pr(a), and we cannot use Equation (8) in our likelihood.  What do 

we do? 

Even if we cannot take it for granted that our target population was stationary, it 

may still be reasonable to assume that it was stable.  In other words, we may be able to 

make all the assumptions listed above for the stationary population, except allowing for 

the possibility of a non-zero growth rate.  (Note, by this logic, that the stationary 

population is simply a special case of the more general stable population.)  As decades’ 

worth of demographic analysis has shown, the assumption of stability is much less 

restrictive than the assumption of stationarity; even when fertility and mortality rates are 

changing and migration is occurring, most human populations still closely approximate a 

stable age distribution at any given time (Keyfitz 1968:89-94; Parlett 1970; Bourgeois-



 9 

Pichat 1971; Coale 1972:117-61).  This property, known as weak ergodicity (Lopez 

1961:66-68), ensures that stable population models almost always fit well, unless the 

populations to which they are being fit have been subjected to unusually rapid, 

cataclysmic change. 

In a stable but non-stationary population, the age-at-death distribution is only 

partly a function of age-specific mortality; it is also influenced by the number of living 

individuals at risk of death at each age, which is influenced in turn by population growth.  

More precisely, the number of deaths at age a is proportional to the product of the force 

of mortality, µ(a), and the fraction of the total population that is age a, conventionally 

labeled c(a).  In a stationary population, c(a) is proportional to S(a), the probability of 

surviving from birth to age a, which makes the age-at-death distribution a reflection of 

mortality alone – but only in that special case.  In a stable population with a non-zero 

growth rate equal to r, the value of c(a) is proportional to S(a)e-ra.  The quantity e-ra 

corrects for the fact that the absolute number of newborns entering the population each 

year is changing as a result of population growth, thus distorting the age distribution that 

would have been expected under conditions of stationarity.  For a positive growth rate, 

for example, there are more individuals born this year than, say, ten years ago:  if B 

babies are born this year into a stable population, then B × e-10r babies must have been 

born ten years ago. 

This change in the number of individuals entering the population at a = 0 means 

that the number of people dying at each subsequent age must be a function not only of the 

force of mortality, but of the growth rate as well.  The number of people surviving to 

each age is proportional to S(a)e-ra; those survivors are then exposed to the age-specific 

mortality rate µ(a).  Thus, the probability density function for deaths in a stable 

population with growth rate r is  

 

  

∫∫
∞

−

−

∞
−

−

==

0
0

0

0

)(

)(

)()(

)()()(
dxexf

eaf

dxexSx

eaSaaf
rx

ra

rx

ra

r

µ

µ .           (11) 

 

(Compare Equation 8.  It should now be clear why we mark f0(a) with a subscript zero: it 

represents Pr(a) only if the population’s growth rate is zero – or in the profoundly 
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unlikely event that we are dealing with a single cohort.)  As shown in the Appendix, this 

same expression applies to all the skeletons accumulated by a stable population over 

some more or less protracted span of time.  In principle, then, we can treat fr(a) as the 

Pr(a) function in our likelihood (Equation 2) and estimate r as an additional parameter of 

the model – if we can assume that the population was stable.  And if it was not stable, at 

least approximately, we have probably reached the outer limits of what we can ever hope 

to learn about age-specific mortality from skeletal samples. 

This correction for non-stationarity still requires us to specify a parametric model 

for the age pattern of mortality.  In other words, we still need to write down an equation 

for either µ(a), f0(a), or S(a).  And we should try hard to choose an equation that is 

flexible enough to approximate all known human mortality distributions in order to be 

reasonably confident that the model will accommodate the unknown mortality 

distribution we are trying to reconstruct.  At the same time, the model must be 

sufficiently bounded that growth rates are uniquely identifiable since identifiability of the 

growth rate is not guaranteed for some possible parametric models (Holman et al. 1997, 

1998).  So we need the simplest possible model that is still complicated enough to capture 

most of what we know about human mortality patterns.  Which immediately raises the 

question: what do we know about human mortality patterns, including their common 

features and their range of variation? 

 

What Does the Human Mortality Curve Look Like? 

Mortality trends and patterns have been well characterized for many 

contemporary human populations and some historical ones (mostly European, mostly 

confined to the past four centuries) (Coale and Demeny 1966; Keyfitz and Flieger 1968, 

1990; Preston 1976; Gage 1990).  Much less is known about mortality conditions among 

the types of populations typically studied by anthropologists: the small foraging or 

horticultural societies characteristic of most of human existence.  Nonetheless, work to 

date suggests that the mortality profiles of these populations tend to conform to a 

generalized human pattern, although often at a level of mortality near the upper end of the 

range typically observed in national and historic populations (Weiss 1973; Gage 1988).  

It thus seems meaningful to talk about the “common” age pattern of human mortality. 
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The basic pattern of the age-specific force of mortality is, in some respects, 

strikingly similar across a wide range of human populations, whether characterized by 

high mortality or low (Figure 1).  The general pattern appears to be one of excess 

mortality at the youngest ages of the life span, with a rapid, monotonic decline to a 

lifetime low at around 10-15 years of age.  This low point is followed by an accelerating 

rise in mortality at later ages, a rise that appears to be roughly exponential.  Because this 

age pattern of mortality looks rather like the cross-section of an old-fashioned clawfoot 

bathtub, it is sometimes referred to as the bathtub curve.  Figure 2 shows the survival 

function and the cohort PDF associated with the bathtub curve. 

The principal variations on this common theme that are observed in historical and 

modern populations include wide differentials in the excess mortality occurring at the 

youngest and oldest ages and, in some populations, marked differences in the timing of 

the decline in juvenile mortality or the rise in adult mortality (Coale and Demeny 1966; 

Keyfitz and Flieger 1968, 1990; Preston 1976).  All these phenomena are illustrated in 

Figure 1.  These are, we suggest, the minimal kinds of variation we should expect our 

model to be able to capture. 

Types of variation in the age pattern of human mortality that are less commonly 

observed – perhaps because they are of much smaller magnitude and thus require 

uncommonly good data to show through – include the so-called “accident hump” at late 

juvenile and early adult ages and an apparent slowing down of the rate of increase of 

mortality among the oldest of the old.  The accident hump, as Gage and Mode (1993) 

have noted, is most clearly observed in males from European-derived populations with 

low mortality (most notably the U.S., Canada, and Australia).  Luder (1993) has 

suggested that it also occurs in non-human primates, although inadequate data make this 

claim difficult to evaluate.  Even if the accident hump is a widespread phenomenon in 

human populations, the actual magnitude of the mortality rise associated with it appears 

to be miniscule, a point rightly emphasized by Gage and Mode (1993). 

The deceleration of mortality among the oldest old is sometimes observed in 

populations for which exceptionally good data on the elderly are available (Horiuchi and 

Coale 1990; Kannisto 1994; Thatcher et al. 1997; Vaupel 1997; Vaupel et al. 1998).  One 

possible explanation for this deceleration of mortality at the oldest ages is selective 
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mortality, which might be expected to eliminate all but the least vulnerable individuals by 

the time the oldest segments of the life span are reached (Vaupel et al. 1979; Brooks et al. 

1994; Himes 1994).  Recent work on other organisms also highlights the possibility that 

the deceleration in mortality is real at the individual level, and not just an artifact of 

selectivity (Carey et al. 1992; Fukui et al. 1993; Vaupel et al. 1994).  From a 

paleodemographic perspective, these issues seem moot for the simple reason that the 

deceleration of mortality, whatever its cause, is only observed at ages so advanced (after, 

say, 90 years of age) that it cannot have been an important feature of mortality in any 

preindustrial population. 

In our opinion, then, the accident hump and the senescent deceleration in 

mortality exemplify just the sorts of “bumps and squiggles” in the mortality curve that 

paleodemographers will never be able to resurrect with any credibility.  It would seem 

sufficiently challenging to try to reconstruct the general shape and level of the bathtub 

curve. 

 
Ways of Modeling Mortality 

As the previous section suggests, the mortality patterns of human populations can 

all be regarded as variations on a common, species-wide theme – where both the 

variations and the commonalities are of interest.  The challenge in modeling mortality 

consists in capturing the underlying “universal” age structure of death while allowing for 

at least the principal kinds of variation in its detailed realization observed in the real 

world.  Past attempts to model mortality can be classified in several different ways; one 

way that is especially telling in the present context is to subdivide them into semi-

parametric (or perhaps semi-empirical) and fully parametric forms.  Semi-parametric 

models start with empirically observed mortality schedules and generalize them, usually 

by subjecting them to some form of regression analysis.  For example, the pioneering 

work on model life tables, published by the United Nations (1955, 1956), involved 

regressing estimates of the infant mortality rate on the rest of the age schedule of 

mortality across 24 different populations.  No attempt was made, beyond the regression 

model itself, to reduce all the empirical complexities to a simple mathematical form.  But 

reduction to a simple mathematical form is precisely what the fully parametric approach 
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seeks to do.  In this approach, empirical data are examined rather informally to get a 

sense of what the age pattern of mortality ought to look like, and then an equation is 

found that mimics that pattern to some acceptable degree of approximation. 

It might be thought that the semi-parametric approach is always preferable 

because, from its very outset, it hews more closely to real data.  But, as we detail in the 

rest of this paper, this is far from being the case.  Particularly when parametric models are 

simple and allow some etiologic interpretation, they can be much more enlightening 

about real-world processes affecting mortality. 

In the following sections, we discuss one semi-parametric model and several fully 

parametric ones.  The semi-parametric model we have chosen is one of several known as 

relational models (Zaba 1979, 1981; Heligman and Pollard 1980; Ewbank et al. 1983; 

Aalen 1989), so-called because they are all based on statistical relationships among 

empirical mortality patterns.  Relational models, in some respects, represent a 

compromise between traditional life tables and fully parametric models – hence our 

description of them as “semi-parametric”. 

 

Relational Models 

 The development of relational models was originally inspired by a quest to find 

the minimal number of parameters needed to capture all the variation in the level and 

shape of the human curve of age-specific mortality.  A preliminary solution to this 

problem was provided by Ledermann and Breas (1959) who performed a factor analysis 

of estimated age-specific mortality rates from a large number of populations, showing 

that two latent factors (apart from sex) accounted for more than half of the observed 

variation in mortality.  This result inspired Brass (1971) to develop a two-parameter 

model of mortality, one that underlies what has come to be called the Brass (or logit) 

approach to mortality estimation.  The Brass model is the prototype for all later relational 

models (e.g. Zaba 1979; Ewbank et al. 1983), and it can be used to exemplify the 

approach as a whole. 

The logic of the Brass system starts with the theoretical survival function S(a).  

Imagine for the moment that two populations (denoted by the subscripts 1 and 2) differ 
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only in the level of mortality, so that )()( 21 aa κµµ =  for all a, where κ is a constant.  

From Equation (6) it follows that 
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By inspecting a large number of empirical mortality schedules, Brass discovered that the 

scalar κ relating different schedules is not in fact a constant, but declines toward unity 

with advancing age.  For example, in one extreme comparison µ(a) was more than 16 

times higher in one population than in another in the age interval 1 to 4 years, but 

dropped to about 1.5 times higher at ages 75 to 79 (Brass 1971).  Brass found that this 

pattern could be closely approximated by a function of the form 
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Solving for Si(a), 
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where α and β are new constants. 

If the number x lies between 0 and 1, then ln [x/(1 - x)] is known as the logit 

transform of x, often written logit(x).  Thus, we can rewrite Equation (14) as logit [1 - 

S1(a)] = α + β logit [1 - S2(a)].  This equation is the basis of the Brass relational model, 

and α and β are its two parameters.  Roughly speaking, a choice of α sets the overall 

level of mortality (as reflected in, say, the life expectancy at birth) while β sets the “tilt” 

of mortality curve 1 compared to curve 2. 

 Now suppose that “population 2” is a well-studied reference population whose 

survival schedule has been estimated properly from high quality data, and “population 1” 
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is some target population whose survival schedule is only poorly known.  Then a linear 

regression of logit [1 – S(a)] from the target population on that of the reference 

population, in the form of Equation (14), can be used to smooth the target population’s 

mortality curve and fill in any gaps (see Brass 1975 for technical details).  In this way, 

information on part of the target population’s survival schedule can be used to generate 

the entire schedule. 

In his original paper on the subject, Brass (1971) showed that the logit approach is 

reasonably flexible and provides plausible results when applied to data from a wide 

variety of national populations.  In the same paper, Brass provided a reference life table 

that has proven useful in analyses of mortality data from Africa and Asia (see Brass and 

Coale 1968; Carrier and Hobcraft 1971).  It is important to emphasize, however, that 

neither the logit approach in general nor the Brass reference table in particular has been 

able to cover all known human mortality patterns, and both may be especially bad for the 

small, high-mortality populations commonly studied by anthropologists (Wood 1987a).  

In addition, the form of Equation (13), and hence (14), was not derived from theoretical 

considerations, but is purely empirical.  Nonetheless, relational models provide a simple 

system for mortality estimation that is flexible enough to warrant more attention by 

paleodemographers than they have hitherto received. 

 

Fully Parametric Models 

An alternative to model life tables and relational models are parametric models of 

the age pattern of mortality (Wood et al. 1992a).  If constructed properly, these models 

reduce the numerous life-table age classes into a small number of biologically meaningful 

parameters that can all be estimated from data on the target population being studied 

(Gage and Dyke 1986; Gage 1989; Gavrilov and Gavrilova 1991).  Parametric models 

have only begun to be widely applied in demographic research in the last two decades as 

advances in computer technology have facilitated the development, testing, and 

application of complex statistical models (Mode and Busby 1982; Mode and Jacobsen 

1984; Gage 1988, 1989; Wood et al. 1992a; Gage and Mode 1993).  These models are 

extremely promising for use with small paleodemographic samples because of their 
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parsimony in describing mortality patterns with the smallest possible number of 

parameters. 

Like relational models, fully parametric models of mortality can be used to 

smooth and correct inadequate mortality data.  But they can be much more flexible than 

relational models.  All mortality models impose a certain amount of a priori age structure 

onto the data being examined, but good parametric models make the fewest assumptions 

about what the detailed age pattern of mortality ought to be.  In theory, this permits us to 

come closer to the “true” underlying age structure of mortality in the population being 

studied – assuming that we have selected the right parametric model. 

A number of parametric models of the age patterns of mortality have been 

developed over the years, as attempts have been made to formulate a general “law of 

mortality” applicable to all human populations (for reviews, see Mode 1985:35-74; Gage 

1989; Gavrilov and Gavrilova 1991; Wood et al. 1992a).  In the following sections, we 

discuss models that we consider especially promising for paleodemography.  Since 

paleodemographic cause-of-death analysis is (and will probably remain) poorly 

developed, all the models we consider deal with mortality from all causes simultaneously. 

 

Weibull, Rayleigh, and Bi-Weibull Models 

 The two-parameter Weibull model (Weibull 1951) is widely used in industrial 

reliability testing, mainly to model the effects of accumulated damage on product 

breakage (Thompson 1988).  By analogy, it may provide a reasonable model for human 

aging, which is a kind of “wear-out” process.  The force of mortality in the standard 

Weibull model is 

 
ββ ηβµ /)( 1−= aa .            (15) 

 

The associated survival function is 

 

])/(exp[)( βηaaS −= ,           (16) 

 

and the cohort PDF of ages at death is 
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As Nordling (1953) first noted, the two-parameter Weibull specification can be used to 

model so-call multi-hit or multi-stage processes, in which a fixed number of insults or 

disease stages must be experienced before death ensues.  Examples for which such 

models may be relevant include cancer, in which two or more somatic mutations must 

occur before a cell line becomes malignant and metastatic; diabetic nephropathy, which is 

preceded by a fairly regular sequence of diabetic stages; and the formation of arterial 

plaques, for which multiple, sequential lesions in the arterial wall appear to provide a 

starting point (Whittemore and Keller 1978; Andersen 1988; Weiss and Chakraborty 

1990). 

Recently, a special case of the Weibull has been used for paleodemographic 

mortality analysis (Konigsberg and Herrmann 2000).  This is the Rayleigh model, which 

is obtained from the Weibull by setting β = 2.  By fixing one parameter, this model gains 

some efficiency in estimation, albeit at the cost of a corresponding loss in generality and 

flexibility. 

A related model that has found some application in reliability testing is the bi-

Weibull model (Evans et al. 2000:199-200).  Reliability specialists have used this model 

to capture complex processes with both “burn-in” and “wear-out” stages, roughly 

paralleling the maturation and senescent phases of the human life span.  The bi-Weibull 

is formed by adding together two Weibull mortality functions: the first a two-parameter 

Weibull that applies to all ages and the second a three-parameter Weibull that is added to 

the baseline hazard after a = γ, the earliest age at which wear-out affects the risk of death.  

To specify the force of mortality in the bi-Weibull, we need two separate equations: 

  
1)()( −= θλλθµ aa ,    0 ≤ a < γ,       (18) 

and 
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The corresponding survival function is given by 

 
θλ )()( aeaS −= ,     0 ≤ a < γ,       (20) 

and 

 

[ ]{ }( )βθ ηγλ /)()(exp)( −+−= aaaS ,  a ≥ γ.        (21) 

 

The bi-Weibull model does a quite decent job of mimicking the bathtub curve of human 

mortality (Figure 3).  So far as we know, however, it has never been used in 

paleodemography – or any other branch of demography that we are aware of.  If we were 

willing to rely on evolutionary theory that suggests that senescent causes of death do not 

begin to be important until about the time of sexual maturation (Hamilton 1966), we 

could reduce the standard bi-Weibull specification to a four-parameter model by setting γ 

equal to, say, fifteen years of age.  One unfortunate feature of the bi-Weibull, 

incidentally, it that its force of mortality may be undefined at age zero if θ < 1 (because it 

involves division by zero), making it impossible to estimate neonatal mortality. 

 

The Gompertz Model 

The very first attempt to develop a parametric model of mortality was that of 

Gompertz (1825).  Gompertz modeled the aging or senescent component of mortality 

with two parameters: a positive scale parameter α that sets the overall level of adult 

mortality, and a positive shape parameter β that determines how the risk of death 

accelerates with advancing age.  The force of mortality in the Gompertz model is 

 
aea βαµ =)( .             (22) 

 
The corresponding cohort PDF is  
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and the survival function is  
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Gompertz, who was concerned exclusively with mortality associated with aging across 

the adult life span, assumed that the observed increase in adult mortality with age is a 

result of a negative exponential decline in physiological capacity (Gage 1989).  A variety 

of other parametric models of aging have since been developed, some of them based on 

different assumptions about the aging process (e.g. linear rather than exponential decline 

in physiological capacity with age, or models of accumulated damage with age).  Most of 

these ultimately reduce to or approximate the Gompertz equation (Wood et al. 1994; for 

reviews of these models see Mode 1985; Gage 1989; Gavrilov and Gavrilova 1991). 

 

The Gompertz-Makeham Model 

The earliest modification to the Gompertz model, proposed by Makeham (1860), 

involves adding a single parameter to capture age-independent adult mortality.  This 

parameter represents mortality resulting from causes, such as accidents or sexually 

transmitted diseases, unrelated to either maturation or senescence.  The Gompertz-

Makeham model specifies the force of mortality as 

 
a=a βααµ e)( 21 + .            (25) 

 

The α1 parameter in this expression represents the constant, age-independent component 

of mortality; the α2exp(βa) term is just a Gompertz function describing the senescent 

component. 
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The cohort PDF for the Gompertz-Makeham model is 
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and the Gompertz-Makeham survival function is  
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The Gompertz-Makeham model fits well to empirical mortality distributions 

between the ages of 30 and 85 years (Finch 1990).  Nearly all subsequent models of the 

age pattern of mortality have been extensions of the Gompertz-Makeham model, 

primarily intended to cover the rest of the life span – for example, by allowing for an 

early-adult accident hump (Thiele 1871; Heligman and Pollard 1980; Mode and Busby 

1982; Mode and Jacobsen 1984; Gage 1989; Gavrilov and Gavrilova 1991).  As we have 

already suggested, it is probably pointless for paleodemographers to concern themselves 

with a detail as small as the accident hump. 

 

The Siler Model 

One of the most parsimonious parametric models of mortality across the entire 

life span, including pre-adult ages, is the Siler competing hazards model (Siler 1979, 

1983).  This model fits as well as or better than most other models to human mortality 

data (Gage and Dyke 1986; Gage and Mode 1993).  Siler added a third component to the 

Gompertz-Makeham model to represent the earliest segment of life, when the risk of 

death often starts out high but then declines rapidly.  The force of mortality in Siler’s 

model is 

 
aa=a 31 ee)( 321
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 21 

Note that the parameters of Equation (25) have been renumbered here.  Now α1 is the 

level of neonatal mortality and β1 is the rate of decline in early mortality with age.  The 

second term is the constant (Makeham) component of the model, and the third term the 

senescent (Gompertz) component.  The structure of the Siler model invites a simple 

interpretation of mortality as the sum of three components: 

 
)()()( 321 aa=a µµµµ ++ ,           (29) 

 
where each µ represents a distinct set of competing causes of death.  Indeed, Siler (1979) 

called his model a competing hazards model precisely because he interpreted its three 

components as sets of risks that compete simultaneously throughout life.  Because of the 

β parameters, however, the first component is unimportant after the earliest juvenile 

years, and the third component does not become dominant until adulthood. 

The cohort PDF and survival function of the Siler model are 
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and 
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Figure 4 shows an example of the Siler model with parameters chosen to reflect a typical 

human mortality pattern.  Despite the fact that the Siler model does not include an 

accident hump, it still fits reasonably well to human populations, including those that do 

have this feature (Gage and Mode 1993). 

The three components of the Siler model – immature, age-independent, senescent 

– are assumed to be competing but non-interacting causes of death (or, somewhat more 

realistically, clusters of distinct causes of death).  That is, individuals who survive one set 

of potential causes (for example, age-independent ones) are just as susceptible as all other 

individuals to other causes (say, senescent ones). 
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Although the Siler model was not originally developed with much detailed 

etiology in mind (especially with regard to its immature component), Gage (1991) has 

show empirically that the model has considerable etiologic coherence.  For example, 

mortality attributable to infectious diseases such as pneumonia and diarrhea is highly 

correlated with the immature and senescent components; degenerative causes of death are 

primarily associated with the senescent component; and accidents and maternal mortality 

fall largely into the age-independent component of the Siler model (Gage 1991).  

Maternal mortality is not, of course, truly age-independent; it simply is not associated 

with either immaturity or advanced age. 

Gage, who pioneered the application of parametric mortality models in 

anthropological demography (Gage and Dyke 1986; Gage 1988, 1989), has used the Siler 

competing hazards model extensively for both empirical and theoretical investigations of 

the age patterns of mortality.  He has examined international variation in human mortality 

(Gage 1990), the relationship of covariates to this variation (Gage 1994; Gage and 

O'Connor 1994), the age pattern of mortality in anthropological populations (Gage 1988, 

1989), and even the age pattern of mortality in non-human primates (Gage and Dyke 

1988; Dyke et al. 1993; Gage 1998).  He has also examined hypotheses regarding the 

underlying etiology and epidemiology of disease processes and their relationships to the 

age pattern of mortality (Gage 1991, 1994).  And one of his former students has used the 

Siler model extensively in paleodemographic analysis (O’Connor 1995; O’Connor et al., 

1997). 

Although the Siler model is unquestionably useful for investigating human 

mortality, it does have some limitations.  Its immature component, for example, is often 

difficult to estimate and interpret.  There are two distinct reasons for this difficulty.  First, 

although the negative exponential specification of juvenile mortality fits most human data 

fairly well, it is not etiologically derived (Gage 1989).  Second, juvenile mortality is 

difficult to estimate reliably from small samples because information on it comes 

primarily from a tiny subset of the data – those from the first five years or so of life.  In 

most populations, mortality during this segment of the life span is high but declines 

rapidly with small increments in age; thus, almost all the information about juvenile 

mortality must be extracted from an extremely narrow age range.  With small samples, 
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the scale of the juvenile component can sometimes be estimated reasonably well, but 

capturing the shape is more problematic (Gage 1989). This problem is worsened in 

paleodemography because of the common under-representation of infants and young 

children in skeletal samples owing to differential preservation (Gordon and Buikstra 

1981; Waldron 1987; Walker et al. 1988).  This whole issue is important because early 

juvenile deaths make up a large fraction of all deaths in most human populations, 

especially preindustrial ones, and much of the variation in mortality among human 

populations falls in infancy and early childhood (see, for example, Figure 1). For these 

reasons a better theoretical model of mortality at juvenile ages would be useful. 

A second limitation of the Siler model is that it assumes individuals in a 

population to be homogenous with respect to their genetic, physiological, environmental, 

and behavioral risks of death (Gage and Dyke 1986; Gage 1989).  Variation in risk 

factors among individuals or subgroups in a population may influence the age pattern of 

mortality in ways that make comparative analyses difficult to interpret (Vaupel et al. 

1979; Vaupel and Yashin 1985a,b; Gage 1989; Wood et al. 1992a,b; Himes 1994).  We 

expand on this point in the next section. 

 

Interpreting Competing Hazards Models When Mortality is Heterogeneous 

In this section, we show that the competing hazard interpretation of the Siler 

model implies that the population being studied is homogenous in mortality risk – that is, 

the population is made up of individuals who are all subject to exactly the same causes of 

death and are equally susceptible to them.  In the presence of heterogeneity, the model's 

parameters cannot be interpreted in the conventional way proposed by Siler (1979).  In 

other words, models like the Gompertz-Makeham and Siler are implicitly models of 

homogenous risks.  With heterogeneity among individuals in the risk of death, 

interpretation of the µ’s on the right-hand side of Equation (28) is not possible except 

under some not-very-plausible circumstances, as shown below. 

Generally speaking, we do not believe that the members of any natural 

population, human or non-human, have exactly the same age-specific risks of death (for a 

discussion of this point, see Milner et al. 2000).  For example, some individuals may be 

constitutionally frailer than others, a subset of individuals may engage in risky behavior, 
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or some individuals may simply live in riskier environments such as those associated 

with poverty.  A number of recent advances in statistical methodology provide a 

framework for modeling heterogeneity among individuals in a population (see, for 

example, Heckman and Singer 1984; Manton et al. 1992).  Another section of this paper 

discusses several different methods for incorporating heterogeneity into parametric 

mortality models in ways that improve our ability to interpret the estimated parameters. 

The simplest imaginable form of heterogeneity is one in which variation in risk 

comes packaged in the form of two distinct subgroups – but we observe only the mixture 

of the two.  As we show in the Appendix, the Siler model cannot be interpreted under this 

scenario as representing independent competing hazards.  We will refer to models that are 

mixtures of two or more non-overlapping subgroups as mixed hazards models to 

distinguish them from competing hazards models.  Are there any possible two-component 

mixed hazards models that can be interpreted in terms of independent competing causes?  

The Appendix shows that there are (see Equations A.11-A.12), but also that they make 

little if any biological sense.  If we believe that heterogeneity was likely to have existed 

in our target population – and it has almost certainly existed in every human population – 

then we should probably abandon models that purport to be competing hazards models 

and replace them with specifications that can be interpreted explicitly in terms of 

mixtures of heterogeneous subgroups. 

 
 
The Mixed-Makeham Model 

In this section we develop a mixed hazard model of human mortality that fits as 

well as the Siler model – and, just as importantly, has no more parameters.  Consider a 

population made up of two subgroups, and assume that each subgroup has a different 

constant (Makeham) hazard but that both subgroups have the same senescent (Gompertz) 

hazard.  The model is thus a mixture of two Gompertz-Makeham models, but constrained 

so that the two senescent components are identical.  Accordingly, we call it the mixed-

Makeham model.  The force of mortality in the mixture as a whole is 
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where α1 now represents the constant hazard in the first, high-risk subgroup and α2 

represents the constant hazard in the second, low-risk subgroup.  The term p(a) is the 

fraction of high-risk individuals among all the individuals alive at age a, given by 
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where p is the initial fraction of individuals in the high-risk subgroup (i.e. the fraction at 

birth).  From the starting point p, p(a) declines as high-risk individuals are selectively 

removed by death.  As a result, the 1)( αap  term in Equation (32) gets smaller and 

smaller with age, and the overall force of mortality declines accordingly.  Thus, even 

though there is no distinct juvenile component of mortality under the mixed-Makeham 

model, mortality declines during the early years of life as the aggregate mixture comes 

more and more to reflect the low-risk portion of the population (Figure 5).  After a while, 

however, the shared senescent component begins to dominate the overall force of 

mortality, and the risk of death increases correspondingly at later ages in both subgroups. 

The cohort PDF and survival function of the mixed-Makeham model are 
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and 



 26 

S a p a e p t ea a( ) exp ( ) ( )exp ( )= − + −








 + − − + −









α α

β
α α

β
β β

1
3

3
2

3

3

1 1 13 3 .      (35) 

 

We have shown elsewhere that this model usually fits paleodemographic mortality 

profiles at least as well as the Siler model (O’Connor 1995; Holman et al. 1997, 1998; 

O'Connor et al. 1997).  The difference between this model and the Siler is that its 

parameters are easier to interpret and may provide clues about the existence of important 

forms of intra-population variation in material conditions that affect the risk of death.  In 

addition, the α1 and α2 parameters of the mixed-Makeham model are estimated from 

observations drawn from the entire life span and are thus less sensitive to deficiencies in 

data on the very young than are the Siler parameters α1 and β1. 

 

A More General Approach to Modeling Heterogeneity 

The above discussion has focused on discrete heterogeneity in which individuals 

can be assigned to one of two subgroups, each subgroup differing from the other but 

containing members who all share common mortality risks.  This approach can be 

extended to any number of discrete subgroups.  Subgroups may have risks of death that 

are all drawn from the same distribution but with different parameter values, or they may 

have different distributions altogether.  Mixtures of different distributions have been used 

for a number of models in demography, for example, to describe the postpartum 

resumption of menses (Ford and Kim 1987) and pregnancy loss (Wood 1989; Holman 

1996).  Recently, Louzada-Neto (1999) has proposed a “polyhazard” mortality model 

along these same lines. 

A reasonable question to ask is whether we can we justify adding risk groups 

without limit.  Additional subgroups are perfectly easy to handle mathematically, but 

parameter estimation becomes increasingly difficult with each latent subgroup thrown 

into the pot.  Most paleodemographic samples would not be able to cope with more than 

two or three subgroups.  With many subgroups, moreover, we begin to lose the 

straightforward interpretation associated with the simple two-subgroup model.   And once 

we forfeit the ability to interpret parameters, we descend from etiologic modeling to 

empirical curve fitting. 
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Rather than blindly subdivide the population into hypothetical subgroups, we 

might consider a population that consists of such a large number of subgroups that the 

risk of death appears to vary continuously among individuals.  We can then think in terms 

of a continuous probability density function of underlying risk rather than proportions 

falling into discrete categories of risk.  If z is the individual-level component of the risk 

of death – that is, the part of the risk that varies among members of the population – then 

we can write g(z) for the continuous distribution of risk.  The age-at-death distribution 

that we observe is then the expectation over all values of z: 
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= dzzafzgaf )|()()( 00 .           (36) 

We can specify z in f0(a|z) in a number of ways, including as a covariate on a particular 

parameter or on the force of morality as a whole, as in the proportional hazards model 

(Cox 1972; Manton et al. 1986). 

Several researchers have shown that parameter estimates can be disturbingly 

sensitive to the precise choice of equations for g(z) or f0(a|z) (Heckman and Walker 1987; 

Manton et al. 1992; Moreno 1994; Rodríguez 1994).  Consequently, specification of 

these terms should be based, whenever possible, on some theory about the underlying 

mechanisms that generate the heterogeneity in risk (see, for example, Weiss 1990; Wood 

1998).  The gamma, beta, and lognormal distributions are frequently used to model 

heterogeneity.  For example, Gage (1989) has explored the behavior of the Siler model 

with gamma-distributed heterogeneity.  But these specifications are often based on 

mathematical convenience rather than any established biological principles. 

 

Capturing the Sex Differential 

 There is one form of heterogeneity that can reasonably be captured by a simple 

dichotomous model: the difference between males and females.  Since the one thing we 

know about human mortality is that it always differs between the sexes – and sometimes 

markedly so – it makes little sense to apply a single, homogeneous parametric model of 

mortality to a combined sample of male and female skeletons.  Moreover, sex differences 

in mortality are interesting in their own right, and we would like to be able to say 

something about them.  But to examine these differences using the Rostock protocol in its 
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present form we must, in effect, cut our sample size in half by applying the method to the 

two sexes separately.  Even worse, we have to throw out some important biological 

constraints on our parameter values: no matter what the difference in mortality between 

the sexes, the male and female segments of the population have to be growing or 

declining at the same rate r (Coale 1972:53-58), and meiosis re-establishes a sex ratio at 

birth that is always close to one-half.  In addition, male and female age-specific mortality 

rates are not completely unrelated to each other, but differ in quite limited and specific 

ways (Keyfitz 1985:54-76).  It would be a fine thing if we could make use of these 

universal constraints in estimating our model. 

Imagine that our vector of skeletal traits c contains measures that provide 

information about sex as well as age in a sample made up both male and female 

skeletons.  What is the probability, over the sample as a whole, of observing a particular c 

value – say, ci?  It is just the marginal density of ci :  
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where k is an indicator variable for sex (k = 0 for females, 1 for males), and ),( kaf r  is 

the joint distribution of deaths by age and sex in the target population.  (The fact that this 

distribution is subscripted with an r indicates that it has been corrected for non-

stationarity.)  The likelihood function for the whole sample of n skeletons is ∏ =

n

i ic
1

)Pr( . 

To use this likelihood we need two new quantities: an estimate of ),|Pr( kaci  

from a reference sample in which both age and sex are known, and a parametric 

expression for ),( kaf r .  The first is a purely statistical problem, and we ignore it here.  

We focus instead on finding an expression for ),( kaf r . 

We begin with the elementary relationship Pr(a,k) = Pr(k | a)Pr(a).  It follows that 
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where ρ (a) is the proportion of surviving people at age a for whom k = 1.  That is, ρ (a) = 

Pr(k = 1 | a).  This quantity can be found as 
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where ρ (0) is the sex ratio at birth expressed as a proportion and the subscripts 0 and 1 

refer to females and males respectively.  Now, everyone knows that ρ (0) is not exactly 

equal to ½, but it never strays very far from it (in some populations it soars to 0.51, in 

others it plunges to 0.49).  So we assume from now on that ρ (0) = ½.  Thus, Equation 

(39) reduces to 
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Since the numbers of both sexes in a stable population must be changing at the 

same constant rate r, it must be the case that 
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In Equation (41), the bars denote weighted averages over the two sexes.  That is,  
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and 
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if ρ (0) = ½. 

How should we model )(akµ  and )(aSk  themselves?  As a general strategy, we 

propose treating the mortality of one sex as a baseline and letting the other sex differ 

from it in what might be called “quasi-proportional” fashion: 

 

  hazardbaselinea =)(0µ ,          (44) 

and 

 )(
01 )()( aeaa δµµ = ,            (45) 

 

where δ(a) is some function of age that models the sex differential [ ])(/)(ln 01 aa µµ .  We 

have tested several specifications of δ(a) against data from the empirical life tables 

compiled by Keyfitz and Flieger (1968, 1990).  Although we find that δ(a) is positive at 

all ages in almost all human populations (male mortality is almost always greater than 

female mortality), neither a constant difference δ(a) = κ nor the linear function δ(a) = α + 

βa captures the real age pattern of the sex differential.  Instead, the empirical differential 

is typically bimodal by age, peaking at ages 20-25 years and again at 55-65 years 

(sometimes one mode is higher than the other, sometimes a mode is missing).  If our 

quasi-proportional model is to be implemented, we will eventually need to identify a 

simple function that duplicates this pattern. 

What happens from this point on depends in its details on the precise way we 

decide to specify δ(a).  For the present, we will assume that δ(a) acts as a true 

proportional hazard so that we can sketch out the rest of the method as simply as 

possible.  If we can also assume that ρ (0) = ½, then 
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Consequently,  
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which is what we need to substitute in Equation (41). 

 Combining all these results and rearranging, the likelihood of a set of observed 

age- and sex-related traits in a sample of n skeletons is 
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where, as before, the asterisk (*) denotes an estimate made from data on a reference 

sample, and 
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Once we specify parametric models for )(0 aµ  and )(aδ , we can use Equations (48) and 

(49) to estimate ),( kaf r  from the target sample by maximum likelihood.  And once we 

have that in hand, we have both the mortality profile (by sex) and the population growth 

rate of the target population.  We can also say something about how old an individual 

skeleton in the target population is likely to be and what its probable sex is – things we 

would like to know for paleopathological purposes – by plugging our estimates of 

),( kaf r  into the multivariate generalization of Bayes’s theorem:  
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where the hats (^) denote maximum likelihood estimates from the target sample.  This 

expression, which is a straightforward extension of the original Rostock protocol, ought 

to provide us with the proper error structure for both our age estimates and our 

classifications by sex. 

 

Discussion 

 In this paper, we have reviewed several parametric models of mortality processes 

that can be used in conjunction with the Rostock approach to paleodemographic mortality 

analysis.  Since paleodemographers will never be able to fit complicated models to their 

skeletal data, we have emphasized simple models that still do a reasonable job of 

capturing the main features of the human mortality curve.  (The fact that the equations 

describing these models often look dauntingly complicated should not obscure their 

underlying simplicity.)  At the same time, we have tried to focus most of our attention on 

models that support at least a certain amount of etiologic interpretation, so that we may 

actually stand to learn something interesting from our skeletal samples instead of just 

fitting meaningless curves to them. 

On biological grounds, we believe that within-population heterogeneity in health 

and the risk of death ought to be a central theoretical concern of paleodemography (see 

Wood et al. 1992b; Wood 1998; Milner et al. 2000).  Accordingly, we have spent a fair 

amount of effort in exploring the implications of heterogeneity for etiologic models of 

mortality.  One form of heterogeneity that is always with us – viva la hétérogèneité! – is 

the difference between males and females.  As it happens, sex is also one of the 

fundamental dimensions along which we would like to be able to classify our skeletons.  

Therefore, we have proposed an extension of the Rostock approach that estimates the sex 

differential at the same time that it probabilistically assigns age and sex to our skeletons.  

One of the challenges in applying this extension will be to find a simple parameterization 
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of the sex differential in risk of death.  In other words, we need even more parametric 

models, not fewer. 

 

Appendix 

The age-at-death distribution for skeletons deposited over time 

 In a series of famous papers, Lotka (1907, 1922, 1931) worked out the 

characteristics of the stationary and stable population at any instant in time.  In examining 

skeletons from archaeological sites, however, we are never dealing with a single instant 

of time, but rather with some more or less prolonged (and usually unknown) period 

during which skeletons are laid down.  How do we go from the stable or stationary age-

at-death distribution at one time to the corresponding distribution over the entire period 

of deposition? 

If skeletons are accumulated over a span of time equal to ω, then 
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where ),( taf r  is the age-at-death distribution (corrected for non-stationarity) at time t, 

and κ is a normalizing constant ensuring that Pr(a) integrates to one.  If the population is 

stationary, r = 0 and 
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(Lotka 1907).  Since nothing on the right-hand side of Equation (A.2) varies with t, its 

integral is simply a constant equal to ),(0 taf  itself: 
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Note that the right-hand portion of this expression does not contain ω.  Thus, the fact that 

we usually do not know the exact period over which skeletons were deposited is of no 

concern. 

If the population is stable but not stationary (r ≠ 0), we must take into account the 

fact that the number of skeletons being deposited each year changes in proportion to 
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population growth or decline.  In general, the number of deaths age a at time t is 

n(a,t)µ(a), where n(a,t) is the number of living individuals age a at risk of death at time t.  

But since a stable population is closed to migration, n(a,t) = n(0,t–a)S(a).  And since f0(a) 

= µ(a)S(a), the number of deaths at a in t, n(a,t)µ(a), becomes n(0,t–a)f0(a).  Lotka 

(1907) showed that the number of births changes exponentially in a stable population.  

Thus, the number of deaths age a at t can be rewritten as 
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Substituting in (A.1), we have 
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Since the term n(0,0)ert in the denominator of the right-hand side of Equation (A.5) does 

not vary with x, we can pull it out of the inner integral and cancel it from the numerator 

and denominator.  We are left with the relation 
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in a stable population with growth rate r.  Again, this expression does not contain ω, so 

we do not need to know its value.  If r = 0, this equation reduces to Equation (A.3), which 

highlights the fact that the stationary population is just a special case of the stable 

population.  It also shows that we can use Equation (A.6) in our likelihood function to 

estimate r whether it is zero or non-zero, positive or negative. 

 

The implications of heterogeneity for competing hazards models 

Can models such as the Siler model, which are normally interpreted as models of 

competing hazards, support such an interpretation when the population involved is 
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heterogeneous in the risk of death?  Consider a population for which there are only two 

types of individuals.  Individuals of type 1 are all at hazard µ1(a) and individuals of type 

2 are all at hazard µ2(a).  Assume that within the two subgroups individuals are 

homogenous for mortality risk, and let the proportion of newborns in group 1 be p and in 

group 2 be (1 – p). Since f0(a) and S(a) are probabilities, they can be found for the 

mixture of the two groups by using the law of total probability: 
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and 
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Using Equation (6), we can now write the mortality function for the entire population as 
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Clearly, Equation (A.9) does not take the form µ1(a) + µ2(a).   It does not even take the 

form of a simple weighted average of the two subgroups: pµ1(a) + (1 - p)µ2(a).  The 

proper total hazard in terms of both the sub-component hazards is µ(a) = p(a)µ1(a) + [1 - 

p(a)]µ2(a).  In this expression, p(a) is the fraction of those individuals surviving to age a 

who belong to group 1, equal to 

 

)()1()(
)(

)(
)(

)(
21

11

aSpapS
apS

aS
apSap

−+
== .     (A.10) 

 
The numerator is the fraction of survivors in group 1 at age a and the denominator is the 

fraction of all survivors at age a. 

The above exercise shows that interpreting the individual components of a 

“competing hazards” model as if they really were independent competing causes of death 

may be inappropriate when the population consists of two subgroups.  Can the parameters 
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of a two-subgroup mixed hazards model ever be interpreted as a competing hazards 

model?  Some algebra reveals that this is permissible if 
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Since f0(a) = -dS(a)/da, the equivalencies in Equation (A.11) hold when 
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or in the trivial case in which each subgroup experiences exactly the same risk, µ1(a) = 

µ2(a).  If one of these conditions – the first of which is completely arbitrary and the 

second not a model of heterogeneity at all – is not met, competing hazards models such 

as the Siler model are inappropriate and cannot be interpreted properly.  It can be shown 

that similar conditions hold when more than two heterogeneous subgroups exist in the 

population. 
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Figure Captions 

 
Figure 1.  Age-specific force of mortality in four human populations with widely 

differing levels of mortality: Sweden 1985, females (Keyfitz and Flieger 1990); El 

Salvador 1950, males (Keyfitz and Flieger 1968); Bangladesh 1978, both sexes 

(Chowdhury et al. 1981); Gainj (highland New Guinea) 1970-1977, males (Wood 

1987b).  Note that the Gainj, a small horticultural group, was the only one of the four 

without regular access to modern medical care at the time of data collection.  In addition, 

the Gainj curve is based on a small sample (< 150 deaths) and therefore appears 

somewhat more “jagged” than the other examples. 

 

Figure 2.  Survival, force of mortality, and cohort PDF curves associated with the 

“typical” human age pattern of mortality. 

 

Figure 3.  An example of the bi-Weibull model of human mortality. 

 

Figure 4.  An example of the Siler model of human mortality. 

 

Figure 5.  An example of the mixed-Makeham model of human mortality.  The broken 

and dotted curves show the force of mortality in the low- and high-risk subgroups, 

respectively, whereas the solid curve shows the aggregate-level force of mortality in the 

mixture as a whole.  Although neither subgroup curve has a distinct juvenile component, 

the aggregate curve displays a decline in juvenile mortality reflecting selective mortality 

against the high-risk subgroup.  As high-risk individuals are selected out of the 

population, the aggregate curve converges on the low-risk pattern. 
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FIGURE 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100
Age (years)

S(
a)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

µ µµµ
( a

)  
   

f 0
( a

)



 51 

FIGURE 3 
 
 
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

µ(a)

Age (years)

S(a)

f(a)

Bi-Weibull model with parameters
λ = 0.012, γ = 2.0, θ = 0.66, η = 65.8, β = 5.21

 
 



 52 

FIGURE 4 
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FIGURE 5 
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