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Introduction 

Most approaches to age estimation currently used in paleodemography and forensic 

science are not based on formal (or even informal) statistical methods.  Instead, various ad hoc 

procedures have been developed, frequently based on simple tabulations of skeletal markers by 

age.  The classic methods of Todd (1920) and McKern and Stewart (1957), for example, involve 

a non-statistical assignment of a skeleton’s age at death according to documented changes in the 

pubic symphysis.  These methods produce either a non-statistical age range or a point estimate of 

age, without any assessment of the error structure of the estimate based on formal probability 

arguments.  The individual ages produced in this way are then aggregated to estimate the age-at-

death distribution for an entire sample.  As discussed elsewhere in this volume, the age-at-death 

distribution produced by this procedure will usually be biased in the direction of the age 

distribution of whatever reference sample was used to generate the individual estimates in the 

first place.  In addition, we are left with little understanding of the degree of estimation error 

involved, either in the individual age estimates or the estimate of the aggregate-level age-at-death 

distribution as a whole.  

In this paper we explore some statistical methods for estimating age-at-death distributions 

from skeletal samples, with special emphasis on recovering the parameters of parametric models 

of the age-at-death distribution (see Wood et al., this volume).  Only methods compatible with 

the Rostock protocol, described elsewhere in this book, are discussed.  We begin by examining 

univariate methods – those that use a single skeletal age indicator – and then go on to examine 

multivariate methods.  We introduce a new multivariate method for estimating a parametric age-

at-death distribution from a skeletal sample.  The method at least partially corrects for the 

correlations that almost inevitably exist among skeletal traits, and handles missing observations 

on particular traits. 

 

Estimation of an age-at-death distribution 

The data used for paleodemographic reconstruction of a population’s age-at-death 

distribution are macro- and microscopic morphological indicators of age at death from individual 

skeletons.  A considerable body of work has appeared over the past eighty years on the 
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identification and quantification of age-related morphological changes in the human skeleton for 

use as indicators of age at death.  Despite this work, the correlation of skeletal indicators with 

true chronological age, and the accuracy and reliability of most indicators, remain far from ideal 

(Bocquet-Appel and Masset 1982, 1985; Buikstra and Konigsberg 1985; Jackes 1992).  The 

limitations are partly biological, and, aside from developing new and more biologically 

informative indicators, little can be done to improve upon them.  There is considerable room, 

however, for improvement in the statistical methods used for paleodemographic reconstruction. 

Methodological advances are needed in at least three areas.  First, methods are needed 

that produce a target age-at-death distribution that does not mimic the age-distribution of the 

reference sample.1  This “age mimicry” bias was empirically demonstrated by Bocquet-Appel 

and Masset (1982) and mathematically explained by Konigsberg and Frankenberg (1992, 1997), 

who also proposed a statistical solution to the problem.  We build on the methods of Konigsberg 

and Frankenberg in this paper. 

The second area concerns how age estimates are produced for individual skeletons in an 

archaeological target sample.  Traditionally, ages have been assigned to a skeleton directly from 

that individual's skeletal age indicators.  As discussed by Müller and Love (this volume), ages 

produced in this way are usually biased.  In most applications, accurate individual ages can be 

found only after the age-at-death distribution has been estimated for the entire target sample.  

And even then, the resulting age for each target skeleton should be reported as a distribution of 

probable ages, not just as a point estimate. 

The third area is the development of multivariate aging methods that accommodate 

missing skeletal age indicators.  The ideal method would allow multiple aging indicators to be 

combined in way that makes statistical sense.  Clearly, one motivation for developing such a 

method is to wring as much reliable aging information as possible from every skeleton.  Another 

                                                 

1 As in the rest of this book, reference is used throughout this paper to indicate an individual skeleton or sample of skeletons of 
known age used to calibrate our age estimation procedure.  Target refers to the archaeological or forensic skeleton(s) whose 
age(s) at death we wish to estimate.  These usages follow Konigsberg and Frankenberg (1992).  As emphasized by Usher (this 
volume) the “known” ages reported for many famous reference collections are often quite approximate.  We ignore this 
problem and treat reference sample ages as if they were known without error. 
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compelling motivation is that, in real skeleton collections, most if not all skeletons will be 

missing one or more aging indicators for taphonomic reasons. 

Konigsberg and Frankenberg (1992) proposed a multivariate method for estimating age-

at-death distributions using continuous age indicators.  An extension to discrete age indicators 

was given by Konigsberg and Holman (1999).   Both methods estimate a series of means from a 

multivariate normal (or Gaussian) distribution for the joint distribution of all age indicators, 

along with the entire variance-covariance matrix among indicators.  Using this method with a set 

of 10 indicators, all distributed as multivariate normals, would require us to estimate a total of 65 

parameters: 10 means, 10 variances, and 45 covariances.  As the number of age indicators 

increases the method becomes even more parameter-heavy, which, in turn, requires larger and 

larger sample sizes.  In addition, numerically intensive methods must be used for multivariate 

integration, since the method always requires integration in one more dimension than there are 

age indicators.  The strength of the method is that it does not require us to assume statistical 

independence among age indicators. 

Boldsen et al. (this volume) propose a related method, called transition analysis, that 

generates an age-at-death distribution from the joint distributions of a series of skeletal age 

indicators.  This approach makes the simplifying assumption that the indicators are independent 

of each other once they have been conditioned on chronological age.  For 10 binary indicators, 

each with an independent distribution (normal, logistic, etc.), the method yields 20 parameters: 

10 location parameters and 10 scale parameters.  Boldsen's approach is considerably simpler than 

Konigsberg's, if only because no integration is necessary for estimating the parameters from the 

reference sample.  Similarly, sample size is less of a problem because fewer parameters are 

estimated.  But Boldsen's method comes at a price: we are required to make the possibly 

erroneous assumption that the indicators are independent of each other conditional on age. 

In this paper, we develop an alternative approach to estimating a multivariate age-at-death 

distribution – an approach we call the "latent trait" method for reasons that will become clear 

presently.  Our method represents something of a compromise between the two methods 

discussed above.  Age indicators are not considered conditionally independent of each other as in 

Boldsen’s transition analysis, but neither do they require estimation of the entire variance-

covariance matrix as in Konigsberg’s multivariate probit method.  Our method also falls between 
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the others in numerical complexity: numerical integration is required in a single dimension for 

parameter estimation from a reference sample and in two dimensions for recovering the age-at-

death distribution from a target sample.  The advantages of this method are threefold: we do not 

need to assume that age indicators are independent of each other, the number of parameters to be 

estimated grows linearly (not exponentially) with the number of indicators, and the method is 

numerically tractable.  In addition, our model is motivated by some simple biological principles, 

so that some parameters may be of genuine biological interest. 

Statistical age-at-death estimation can be logically separated into two distinct stages.  The 

first stage is the generation of one (or more) standard age distributions from a known-age 

reference sample.  The second stage is the estimation of an age-at-death distribution from some 

target sample, making use of the reference distribution(s) found in the first stage.  Throughout 

this paper, we explicitly divide every method into these two parts and provide the corresponding 

likelihoods for both.  Maximum likelihood methods are then used to estimate parameters.  The 

basic idea of maximum likelihood estimation is to compute a probability (or an individual 

likelihood) for each observation given some underlying probability model of the process.  The 

overall likelihood of the model, given a series of independently sampled cases, is the product of 

the individual likelihoods. The parameter values that globally maximize the overall likelihood 

are the maximum likelihood estimates (MLEs).  Useful introductions to maximum likelihood 

estimation are provided by Edwards (1972), Pickles (1985), and Eliason (1993). 

 

Missing skeletal observations 

Because of differential preservation and recovery, few skeletons display all possible 

indicators of age.  In almost every collection of skeletal material, there will be missing indicators 

for at least some of the individual skeletons.  As an example, Table 1 shows the distribution of 

multiple age-at-death indicators in human skeletons from the archaeological site of Tipu in 

Belize.  In this case, most skeletons (318 of 532 juveniles and adults) could be aged by only one 

or two indicators.  Only five could be aged by all six indicators.   When using multivariate aging 

methods, missing observations for one or more indicators are likely to be the norm.  Any serious 

multivariate aging method must be able to accommodate such missing data. 
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The particular adult age-at-death indicators used at Tipu are listed in Table 2.  The 

skeletal material from this site is, comparatively speaking, reasonably well preserved.  

Nonetheless, while the pubic bone is one of the most common (and one of the best) indicators of 

adult age, only 33 of 255 adults had pubic bones in sufficiently good condition for aging 

purposes.  For the Tipu collection, we would have four options for age-at-death reconstruction: 

we could drop the pubic bone from our suite of age indicators, we could base our age-at-death 

methods on only 33 skeletons (!), we could somehow combine multiple univariate methods for 

different indicators, or we could use a genuinely multivariate method that accommodates the fact 

that the pubic bone is missing in most skeletons. 

Because individual skeletons vary in the age indicators they display – and because each 

indicator varies in its reliability and accuracy – skeletons will differ in the quality and quantity of 

information they contribute to any estimate of an age-at-death distribution.  Most investigators 

have not addressed this problem except with ad hoc solutions.  For example, summary age at 

death, a simple unweighted average of all indicators available for an individual skeleton, is a 

common method for combining multiple univariate age-at-death estimates to come up with a 

single point estimate of individual age (Acsádi and Nemeskéri 1970).  Simple averaging is 

clearly improper for several reasons: (1) the different age indicators do not provide exactly the 

same amount of information, (2) the indicators may not be independent, (3) all information about 

the error structure of the individual age estimates is thrown away, and (4) the age-at-death 

distribution for a target sample must be estimated by aggregating the individual age estimates, 

introducing the risk of reference sample age mimicry (Konigsberg and Frankenberg 1992). 

Some researchers have advocated weighting indicators, but there is no agreed-upon, 

statistically valid method currently available for selecting the weights.  One popular method, 

“multifactorial aging” (Lovejoy et al. 1985), weights each age indicator according to its loading 

on the first principal component estimated from the correlation matrix of all indicators (on the 

assumption that the first principal component represents true chronological age).  In theory, the 

principal components analysis is supposed to be performed on the target sample, not the 

reference sample.  However, principal components analysis requires complete information for 

each individual, and the numbers of complete individuals in most skeletal samples are far too 
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small to support such an analysis.  In the Tipu sample, for example, only five skeletons display 

all six indicators (Table 1). 

The problem of missing data cannot be ignored for any real skeletal sample.  It is 

essential, therefore, to develop a systematic multivariate method for handling missing skeletal 

data without resorting to ad hoc procedures and adjustments.  In the multivariate methods we 

discuss below, we pay particular attention to dealing with missing data.  Our general approach is 

to assume that data are missing at random, by which we mean that the parameters defining the 

probability of an indicator being missing are independent of the parameters for the age-at-death 

distribution itself.  This assumption may not always be a good one for skeletal data.  For 

example, postmortem preservation of skeletal age indicators may vary with age at death since the 

bones of very young and very old individuals often do not survive as well as those drawn from 

the middle portion of the age range (Walker et al. 1988).  This differential preservation by age is 

potentially an important source of bias, since it is likely to result in a disproportionate number of 

missing observations for older adults and young children.  But the assumption that data are 

missing at random still allows for a more satisfactory treatment of missing observations than has 

been possible in the past. 

 

Univariate Methods 
As already mentioned, traditional methods for using age standards derived from a 

reference sample to compute point estimates of age at death for individual skeletons in a target 

sample can be seriously biased.  There are two circumstances, however, when the traditional 

methods actually work (Konigsberg and Frankenberg 1992).  The first is when the age indicator 

is almost perfectly correlated with chronological age, as in the case of annual tree rings.2  The 

second circumstance is when the skeletons making up the reference sample are uniformly 

distributed by age.  If one of these conditions is not satisfied, then the more complex procedures 

described below must be used in order to avoid age mimicry – bias in the estimated target age-at-

death distribution reflecting the age distribution of the reference sample. 

                                                 

2 Cemental annulations are sometimes touted as such indicators by human osteologists, but – as the validation studies presented 
by ???? in this volume clearly show – their correlation with true age is actually much lower than that of tree rings. 
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The life-table method 

One of the simplest procedures for generating a life-table age-at-death distribution was 

given by Konigsberg and Frankenberg (1992).  In this section, we briefly review their method in 

order to set the stage for the more complicated methods that follow. 

We begin with a reference sample made up of Nr skeletons whose ages at death are 

known and who have been scored for a single age indicator (the subscript r denotes the reference 

sample).  The indicator might be pubic symphysis stage, osteon count, suture closure stage, or 

dental root development stage.  The age indicator is assumed to have m non-overlapping states.  

For an indicator such as suture closure, m might be two, closed or unclosed.  For features of the  

pubic symphysis, m will usually be some larger number (e.g. six for one component of the 

Gilbert and McKern pubic system). 

Our goal is to use this known-age reference sample to estimate an age-at-death 

distribution for a target sample of Nt individuals whose ages are unknown but for whom we have 

scored the relevant age indicator.  The result of our analysis, in this particular case, will be an 

age-at-death distribution in the form of a life table with w discrete age intervals. 

Estimating the parameters of the reference distribution – We begin by computing each 

element pia of the matrix P as the relative frequency in the reference sample of individuals in 

indicator state i given age a (where a, in this case, denotes a single age interval).  This array is 

constructed from simple cross-tabulations.  The resulting estimated elements, called ˆ iap , are the 

probabilities of observing indicator stage i for some age a in the reference sample.  We use carets 

(^) over parameters to denote values estimates from a sample – which differs from the way in 

which Konigsberg and Frankenberg (1992) use carets. 

Estimating the target age-at-death distribution – The probability of someone in the 

target population dying in the a-th life-table age interval is denoted da.  Initially we do not know 

the value of each da.  The goal is to estimate the age-at-death distribution d̂ = 1̂d ,..., !dw  subject to 

the constraint 
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(1) 
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As shown by Konigsberg and Frankenberg (1992), we can find maximum likelihood estimates of 

d̂  as follows.  Given ˆ iap , we can compute pi, the probability of observing indicator stage i 

assuming a target age distribution.  For convenience, we define 

(2) 
1

ˆ
w

i ia a
a

p p d
=

=∑ . 

Then, the likelihood function for a given ˆ iap  and some target distribution da is 

(3) 1 2 3
1 2 3

1

t
i i i ni

N

n
i

L p p p pδ δ δ δ

=

=∏ " , 

where δij is an indicator variable that is equal to one if the j-th target individual is in stage i and 

zero otherwise.  We can rewrite this likelihood as 

(4) 
11 1

ˆ
jitN n w

ia a
aj i

L = p d
δ

== =

 
  
∑∏∏ . 

All the life-table probabilities in d are estimated simultaneously as the set of numerical values 

that maximizes the likelihood in equation (3) or (4).  Additional discussion of this method, along 

with paleodemographic examples, can be found in Konigsberg and Frankenberg (1992) and 

O'Connor (1995). 

As outlined by Wood et al. in this volume, describing an age at death distribution with a 

life table is not ideal.  Most human mortality distributions can be well described using five or 

fewer parameters, so that a parsimonious parametric model should be used in place of life tables.  

In what follows, we discuss methods that are fully parametric, both for the distribution of age 

indicators as well as for the age at death distribution. 
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A parametric univariate method 

In this section we discuss univariate methods for estimating a parametric age-at-death 

distribution when age (a) is continuous.  For simplicity, we initially focus on age indicators that 

undergo a single transition (e.g. a suture that makes a transition from opened to closed).  

Discussion of the more complicated "staged" indicators (which can be viewed as multivariate 

data) is postponed for a later section. 

Estimating parameters for the reference distribution – As before, we begin with some 

reference sample of Nr individuals for whom exact ages at death are known.  For each skeleton in 

the reference sample, we observe an indicator state.  In what follows, the indicator can either be 

present or it can be absent.  For example, we might have recorded whether a particular suture is 

opened (absent) or closed (present) in a known-age reference sample of skeletons. 

Following Boldsen et al. (this volume), we will refer to the age at which the indicator 

went from absent to present as the transition age.  Let f(a|µ,σ) denote the probability density 

function (PDF) for the age at which the transition occurs in all human populations – the 

assumption of invariance discussed by Müller and Love in this volume.  It is often reasonable to 

assume that f(a| µ,σ) is either a normal, lognormal, or logistic distribution, but it could be any 

parametric probability density function – preferably one that somehow mimics the underlying 

biological processes.3 And we will make frequent use of both the cumulative distribution 

function (CDF) associated with f(a| µ,σ):  

(5) 
0

( | , ) ( | , )
a

F a f x dx,µ σ = µ σ∫  

and the corresponding survival function:  

                                                 

3 Throughout this paper µ and σ  are used to representing the location and scale parameters of a two-parameter distribution.  The 
distribution may have more than two parameters as well.  Although not strictly necessary, many of the likelihoods that follow 
assume that the PDF is 0 for negative ages. 
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(6) ( | , ) 1 ( | , ) ( | , ) .
a

S a F a f x dx
∞

µ σ = − µ σ = µ σ∫  

The goal at this point is to find µ̂  and σ̂ , the estimates of µ and σ from the reference sample.  

These two parameters completely describe the distribution of transition ages.   

Reference samples are usually observed cross-sectionally.  That is, the aging indicator is 

observed only once, at the age at death.4  Based on the state of the indicator, the skeleton has, at 

the time of death, either made the transition or has not.  The likelihood for a skeleton that has 

made the transition is constructed by specifying the probability that reference individual j aged aj 

made the transition to the indicator state at some unknown age between birth and aj.  This 

probability is given by the entire area under the PDF to the left of age aj, equal to F(a|µ,σ), the 

cumulative distribution at age a. 

For a reference skeleton that did not make the transition by observation age a, the 

likelihood is the area under the PDF from age a to infinity, that is, the survival function at a, 

S(a|µ,σ).  We will assume that all individuals who live long enough will eventually make the 

transition (an assumption that can be relaxed if needed; see Holman and Jones 1998). 

An overall likelihood can be computed from a sample of Nr cross-sectionally sampled 

reference individuals, some who have made the transition (δj = 1) and some who have not (δj = 0) 

made the transition by the age at which they are observed, aj.  Taking the product of the 

individual likelihoods, we get 

                                                 

4 In fact, this need not be the case.  Depending on the specific age indicators being used, it might be possible to observe a living 
sample longitudinally.  Methods for finding reference parameters from mixtures of interval-censored, right-censored, and 
cross-sectionally observed reference individuals are given in Wood et al. (1992) and Holman and Jones (1998). 
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(7) 
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−δ δ
∞

=

−δ δ

=

      = µ σ µ σ  
       

 = µ σ µ σ 

∏ ∫ ∫

∏
. 

Estimating the target age-at-death distribution – Now assume that we have already 

found parameters µ̂  and σ̂  for f(a|µ,σ) from an appropriate reference sample.  For a target 

sample of Nt individuals, we want to estimate the parameters of a continuous age-at-death 

distribution, gd(a|θθθθ), where θθθθ is a vector of parameters (for a review of parametric age-at-death 

distributions, see the chapter by Wood et al. in this volume).  Assume that only cross-sectional 

observations are made on indicators of the target sample, and that these indicators denote the 

state at death.  When δj = 0 the j-th target subject has not yet made the transition (the trait is 

absent), and when δj = 1 the j-th target subject has completed the transition (the trait is present).  

We can rewrite equation (4) for this continuous case with indicator states "absent" and "present" 

as 

(8) 1

1 0

ˆ ˆ ˆ ˆ( | , ) ( | , ) ( | )j j
N

d
j

L = F a S a g a da
∞

δ −δ

=

 
µ σ µ σ 

 
∏ ∫ θθθθ . 

Maximizing equation (8) over θθθθ yields maximum likelihood estimates, θ̂θθθ .   

 

Parametric Methods With "Stage" or "Phase" Data 

Many traditional aging methods are based on a series of stages or phases rather than 

single transitions.  While these methods are useful in the non-statistical context for which they 

were developed, they add serious complications when we adapt them for the statistical methods 

discussed here.  When the indicator of interest is not a present/absent indicator but has ordinal 

states (as in pubic symphysis stages), the above parametric method must be modified. 

Most adult (senescent) age-at-death indicators are based on phases or stages, including 

the pubic symphysis (Todd 1920; McKern and Stewart 1957; Gilbert and McKern 1973), the 

auricular surface (Lovejoy et al. 1985), ectocranial suture closure (Meindl and Lovejoy 1985), 
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and morphological changes in the ribs (Iscan et al. 1984, 1985), proximal femur (Walker and 

Lovejoy 1985), or clavicle (Walker and Lovejoy 1985).  Todd (1920) was the first to study the 

relationship between chronological age and metamorphosis of the articular face of the pubic 

symphysis in a systematic way.  Using the Todd collection,5 Todd described 10 modal phases for 

adults between the ages of 18 and 50 years, each phase corresponding to a specific age range 

(Table 3).  Each Todd phase is defined by several different features of the pubic symphysis 

scored in combination, including the dorsal plateau, ventral rampart, symphyseal face, 

symphyseal rim, furrows, pitting, and so on.  Todd eliminated any pubic symphysis in the sample 

that did not conform to what he considered the “normal” modal phases of development.  Brooks 

(1955) modified Todd’s phases by shifting the age range for the phases covering 26-45 years 

downward three years to correct for a tendency to over-estimate age. 

McKern and Stewart (1957) used a reference sample of American soldiers killed in the 

Korean War to develop a three-component system for estimating age from the pubic symphysis.  

Although reported ages are much more accurate in this sample than in the Todd collection, the 

McKern-Stewart collection has a much more restricted age distribution, with few skeletons over 

the age of 30. 

Each of the three McKern-Stewart components has six stages.  To estimate age, each 

component is ranked on a scale of 0-5; then a sum of scores for the three components is totaled 

and compared with a table of scores and associated chronological ages (Table 4).  Although a 

large number of combinations is theoretically possible, only 21 of these occur with any 

frequency.  Because of the restricted age distribution, this system does not work well for ages 

beyond 30 or 40 years (O'Connor 1995). 

It is important to realize that most "stage" or "phase" methods are trying to code for 

multiple morphological changes in a variety of structures.  This is clear from reading the 

description of the first two Todd stages:  

 

                                                 

5 Consisting of the skeletons of 465 indigenes from the Cleveland, Ohio, area (306 white males, 47 white females, 90 black 
males, and 22 black females).  While this collection covers a broad range of reported ages, ages are often poorly known and 
display abundant heaping at years ending in zero or five (see Usher, this volume). 
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(1) Symphysial surface rugged, traversed by horizontal ridges separated by well marked grooves; 
no ossific nodules fusing with the surface; no definite delimiting margin; no definition of 
extremities. 
(2) Symphysial surface still rugged, traversed by horizontal ridges, the grooves between which are, 
however, becoming filled near the dorsal limit....  Ossific nodules fusing with the upper symphysial 
face may occur; dorsal limiting margin begins to develop, no delimitation of extremities; 
foreshadowing of ventral bevel (Bass 1971:155). 
 

Clearly, this is a multifactorial indicator involving many different types of surface remodeling on 

the pubic symphysis, with an occasional nod toward future changes.  Similarly, the McKern-

Stewart method uses multiple components to assign a score.  For example, scores 3 and 4 of 

component three are described as follows: 

 
(3) The symphyseal rim is complete.  The enclosed symphyseal surface is finely grained in texture 
and irregular or undulating in appearance. 
(4) The rim begins to break down.  The face becomes smooth and flat and the rim is no longer 
round but sharply defined.  There is some evidence of lipping on the ventral edge (Stewart 
1979:163). 
 

These stages do not represent a single biological trait that changes with age in a straightforward 

way.  Rather, the stages are based on an entire suite of traits that are packaged together for 

descriptive convenience.  Unfortunately, the convenience evaporates when we try to develop 

formal multivariate parametric methods for age-at-death estimation.  We strongly recommend 

that new reference age indicators be developed that are based only on single transitions (or 

continuous measures for continuous indicators).  Our reasons are twofold.  First, it makes the 

math much easier and more logical.  But more importantly, it discourages us from developing 

methods that treat complex traits as if they resulted from a single process. 

Estimating parameters of the reference distribution using staged indicators – For each 

skeleton in the reference sample, we observe an indicator variable that includes m > 2 ordered 

stages.  As before, the reference sample comprises Nr skeletons of known age at death.  One way 

to treat these data is to define m – 1 transitions that occur from one phase to the next, and use 

f1(a| µ1, σ1),  f2(a| µ2, σ2), . . . , fm–1(a| µm–1, σm–1) to denote the PDFs for the ages at which each 

transition occurs in the population.  The multivariate methods described in the following sections 

can then be used to estimate all m – 1 distributions. 

To estimate the distributions, we define a set of m – 1 stage transition variables T2 to Tm 

(or T1 to Tm–1 if the phases are numbered from 0) that are set equal to one if the transition has 
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been made for that stage and zero if not.  Consider, for example, one particular McKern-Stewart 

pubic symphysis component.  Table 5 shows how to convert component phases 0 to 5 into the 

five transition variables T1 to T5.  We can find the µ̂ s and σ̂ s corresponding to these transition 

variables by maximum likelihood using one of the multivariate methods described later in this 

paper.  The results can then be used to estimate the target age-at-death distribution using the 

corresponding multivariate method. 

Alternative methods for staged indicators – Alternative methods for handling staged data 

that can be found in the statistical literature include the ordered probit or logit method, which 

treats the entire set of phases as a single ordered process.  The model was introduced by 

McKelvey and Zavoina (1975) and McCullagh (1980), and is commonly used in the social 

sciences (Long 1997).  An example of the method applied to the estimation of an age-at-death 

distribution can be found in the chapters by Hermann and Konigsberg and by Boldsen and 

colleagues. 

 

Multivariate Methods 
Independent age indicators 

Now consider the case in which multiple age indicators are observed.  Each individual 

has one or more of these indicators.  Initially, we assume these indicators are completely 

independent of each other.  Later we will discuss ways of treating non-independence among 

indicators. 

Estimating parameters of the reference distribution – For n independent age indicators 

scored in our reference sample, we can simply take the product of the individual likelihoods for 

each indicator.  A sample of Nr reference individuals thus yields the likelihood: 
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where δij is an indicator variable that is equal to one if the j-th reference individual for the i-th 

age indicator is present and 0 if it is absent. The indicator variable εij denotes that the age 

indicator is available for scoring.  It is set to zero when the i-th age indicator is missing for the j-

th individual, and one if it is not.  This, in effect, yields a likelihood of one for each missing 

observation so that it makes no contribution to the overall likelihood. 

It is important to realize that equation (9) assumes that the probability of each transition is 

independent of all other transitions in the same individual.  If some age indicators are correlated, 

then estimates for the µs and σs could be biased.  The degree of bias is an empirical question for 

any combination of age indicators and reference sample. 

Estimating the target age-at-death distribution – The extension for estimating the age-

at-death distribution in the target sample is straightforward.  Again we assume indicators are 

independent, and we have estimated the parameters !µµµµ  and !σσσσ  for the distributions fi(a|µi,σi), i = 

1..n, from the reference sample.  The transition indicator δij is now equal to one if the j-th target 

individual has made transition for age indicator i, and zero otherwise.  The likelihood is a 

straightforward multivariate extension of equation (8), in which we place all the independent 

reference distributions inside the integral:  

(10) (1 )

1 10

ˆ ˆ ˆ ˆ( | ) ( | , ) ( | , )
t

ij ij ij ij
N n

d i i i i i i
j i

L = g a S a F a da
∞

−δ ε δ ε

= =

 µ σ µ σ ∏ ∏∫ θθθθ . 

Missing age indicators are handled by setting εij to zero. 

 

Non-independent indicators: The full multivariate method 

Estimating parameters of the reference distribution – The full method for handling 

multiple age indicators is to treat them as following some multivariate distribution that includes 
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all covariance terms.  If, for example, the indicators are assumed to be multivariate lognormal, 

then we use a multivariate lognormal distribution, including all covariances.  For n independent 

age indicators, let m be the array of n means (µ1, µ2, . . ., µn) and V the n×n variance-covariance 

matrix.   For a sample of Nr reference individuals, the likelihood is 

(11) L d
a

a

j

N

j j j

j j jt

=
−=
z∏ f x m V x

1 d

d

( | , )
( )

/( )

εεεε

εεεε

1

. 

Note that this likelihood requires us to integrate the array of ages over all dimensions of the 

multivariate distribution f(a|m,V).  The array dj consists of n indicator variables for the j-th 

individual: element δij is equal to one if the i-th transition has occurred in that individual, and 

zero if it has not occurred.  Then 1-dj is the array of complements of dj and εεεεj is a vector of n 

indicators denoting missing observations (εij is 0 if missing, 1 if not).  The upper limit of 

integration is set to infinity whenever an observation is missing or the age indicator is absent (but 

not missing) in any given dimension.  The lower limit of the integral goes to zero for a missing 

indicator or when the age indicator is present in a dimension.  In this way, a missing age indicator 

results in a marginal likelihood of one (integration from 0 to infinity in that dimension).  When 

the indicator is not missing, the limits of integration in one dimension will be from aj to infinity 

if the transition has not been made, and from 0 to aj if the transition has been made.  This method 

of estimating m̂  and V̂  is identical to multivariate probit analysis (Bock and Gibbons 1996; 

Chib and Greenberg 1998; Konigsberg and Holman 1999). 

There are two practical difficulties with this full multivariate method.  First, it is 

extremely numerically intensive.  Multivariate integration over more than about five dimensions 

takes a great deal of computing time, even using very fast computers.  To get around this 

difficulty, one of several methods of stochastic integration can be used, such as the Gibbs 

sampler or the Markov chain Monte Carlo method (see Konigsberg and Holman 1999; Hermann 

and Konigsberg, this volume).  These methods make it feasible to integrate multivariate integrals 

to fairly high dimensions. 

The second difficulty is posed by the number of parameters that must be estimated.  As 

the number of age indicators increases, the number of parameters that must be estimated grows 
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as ( )2 3 / 2n n+ .  For example, with two indicators we estimate two means, two variances, and 

one covariance term – a total of five parameters.  For five indicators we must estimate 20 

parameters (five means, five variances, ten covariances).  And for ten indicators there are 64 

parameters to estimate.  If we wanted to use 20 indicators (for example, by observing the 

emergence of all the deciduous teeth), we would need to estimate 230 parameters!  Alas, as the 

number of indicators grows, the reference sample size needed to estimate the parameters with 

any certainty increases.  In response, we might be tempted to reduce the number of indicators we 

use for age estimation by throwing out data – not an appealing strategy. 

Estimating the target age-at-death distribution – Estimation of the target age-at-death 

distribution for the multivariate case uses all the information from the full multivariate 

distribution f(a|m,V).  If we have already estimated m̂ (the n means) and V̂  (the n × n variance-

covariance matrix) from the reference sample, we can find the likelihood for the Nt target 

individuals as a simple multivariate extension of equation (8): 

(12) L g a d dad
a

a

j

N

j j

j jt

=
−

∞

=
zz∏ ( | ) ( | ! , ! )
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/( )
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f x m V x
1 d

d

01

. 

 

Non-independent indicators: The latent trait method 

The latent trait method is intended as a compromise between the extremes of assuming 

that age indicators are independent of each other and trying to estimate the full multivariate 

distribution.  The method is based on a model of a particular type of non-independence among 

age indicators, one that is of much lower dimensionality than the full variance-covariance matrix.  

Integration is required over only one dimension for finding parameters from the reference 

sample, and two dimensions for finding the age-at-death distribution from the target sample.  The 

major advantage of this model compared to the full multivariate model discussed in the previous 

section is that the number of parameters increases linearly with the number of age indicators, not 

as the square. 

The method is based upon a simple biological model for the underlying developmental or 

senescent process that affects the skeletal indicators of interest.  For simplicity, we discuss the 
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method assuming that the indicators are developmental (growth-related) rather than senescent in 

nature.  For concreteness, we use the first emergence of various deciduous teeth as our example 

of the skeletal indicators of interest.  The principles apply equally well to senescent traits. 

The method supposes that each child has its own individual growth rate z, and that the 

value of z acts to accelerate or decelerate emergence of all the child’s teeth simultaneously 

(Figure 1).  In a child with a low value of z – and thus a slow underlying growth trajectory – all 

teeth will emerge later, on average, then in a child whose z value is high.  Under this model, the 

correlations among the various emergence times within a child reflect both the child's age and the 

value of its underlying growth parameter zj. 

The effect of z can be different for each tooth.  For some teeth z may have almost no 

effect, for others the effect may be strong.  The different effects of z can be seen as different 

slopes across z for the teeth in Figure 1.  We use a series of parameters βzi to describe the strength 

of association between latent trait z and age indicator i.  

Although the model assumes that each child has its own unique growth trait, we do not 

attempt to measure the value of z for each child.  This value is not directly observable, but rather 

is concealed or latent.6  We assume that the trait has a particular parametric distribution among 

children – a distribution whose parameters are initially unknown.  The lower panel of Figure 1 

shows a hypothetical distribution of z among children in a population.  Even though we cannot 

measure the z value for each child, we can estimate the entire distribution of z values among 

children, as well as the average effect of the latent trait on the emergence of each tooth. 

The method controls for correlations among age indicators in a way similar to that of 

models of shared frailty and some random effects models (e.g. Hougaard 1986; Klein et al. 

1999).  The effect of z on the PDF fi(a|µi, σi, z, βzi) or the survival function Si(a|µi, σi, z, βzi) of 

transition times for the i-th aging indicator, can be modeled in one of two standard ways.  The 

first is by using an accelerated failure-time model, in which the effect of z is either to accelerate 

or decelerate the time to the transition (Klein et al. 1999).  One common specification for an 

                                                 

6 We use latent trait in a biological sense to denote a continuous unmeasurable trait that affects a series of binary indicators.  
Konigsberg et al. (Chapter 10) use the term latent variable in the statistical sense to denote an underlying continuous variable 
that is revealed as a binary or staged indicator.  Thus, the method we discuss here is a latent variable model (for a series of 
binary indicators) for which each indicator is also affected by an additional latent trait, z. 
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accelerated-failure time model is fi(a|µi, σi, z, βzi) = fi[a|µiexp(zβzi), σi], in which βzi simply shifts 

the mean time to emergence up or down without changing the variance (Figure 2, top panel).  A 

second standard way to model the effects of z is to assume that it increases or decreases the 

hazard of making the transition at each age.  If a proportional hazards model is specified, the 

effect of z on the PDF of transition times is 
exp( ) 1( | , , , ) ( | , ) ( | , ) zi ziz z

i i i zi i i i i i if a z f a S a eβ − βµ σ β = µ σ µ σ  and the effect of z on the SDF is 

exp( )( | , , , ) ( | , ) ziz
i i i zi i i iS a z S a βµ σ β = µ σ .  Under this specification both the mean and the variance 

of times to emergence change with different values of βzi (Figure 2, lower panel). 

The distribution of z must be specified parametrically – for example, as a gamma or 

normal distribution, both of which are often used in this kind of analysis.  In the examples 

presented below, we use a normal distribution for z, which we denote gz(z|µz,σz).  The parameter 

µz is constrained to equal zero, and we estimate the σz parameter along with the arrays µµµµ and σσσσ 

for the n age indicators.  When more than two age indicators are used, an array of n–1 βzi 

parameters is found as well, each βzi telling us something about the strength of association 

between z and the i-th age indicator.  The value of βz1 is constrained to equal one, so that the 

other β parameters model the effect of z on the corresponding age indicators relative to its effect 

on the first age indicator. 

Estimating parameters of the reference distribution – For a sample of Nr reference 

individuals and n age indicators, we need to modify equation (9), which assumed independence 

among all the aging indicators.  We now want to estimate the function gz(z|0,σz) that describes 

how z varies among individuals.  In addition, the distribution for each age indicator, fi(a|µi,σi) or 

Si(a|µi,σi), has a new parameter βzi that describes how strongly the indicator is affected by the 

individual's underlying growth trajectory z.  The necessary likelihood is 
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The latent trait method can be used for either developmental or senescent traits.  When 

both types of trait are available in the reference sample, it is conceivable that distributions for 

two separate latent traits (one for growth and one for senescence) can be estimated. 

Estimating the target age-at-death distribution – We assume that the parameters !µµµµ , !σσσσ , 

!ββββz , and ˆ zσ  have already been estimated from the reference sample.  The likelihood for the target 

sample is then an extension of equation (10), to which we add integration over the distribution of 

z.  The likelihood for Nt target individuals is 

(14) (1 )
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Application 
In this section, we present an illustrative analyses using the latent trait method.  The data 

set was provided by Lyle Konigsberg, who used it in Chapter 10.  Reference and target 

distributions were by partitioning out of a sample of 737 known age males, each scored by the 

Suchey system.  A target sample of 149 target individuals was drawn according to Gompertz-

Makeham distribution with parameters α1 = 0.01, α2 = 0.001, and βg = 0.1, and the reference 

distribution encompassed the remaining 588 individuals. 

In our attempts to retrieve parameters for the age at death distribution of the data set we 

treated the six pubic phases as a series of five transitions representing five correlated age 

indicators, modeled as being log-normally distributed.  Maximum likelihood estimates of the 

reference and target parameters were found by the latent trait method using equations (13) and 

(14), and for comparison we estimated the corresponding models assuming independence among 

traits by equations (9) and (10).  A proportional hazards specification was used to model the 
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effect of z on the age indicator distributions.  Parameters were estimated by numerically 

maximizing the loglikelihood using mle version 2.0 software (Holman 2000).  Numerical 

integration was performed by 30-point trapezoidal approximations.  Estimates of the standard 

errors were found by the method of Nelson (1982), which involves inverting a numerical 

approximation of Fisher's information matrix. 

The latent trait model used to estimate the multivariate reference distribution has five µ 

and σ parameters, four β parameters, and one σz parameter.  The resulting parameter estimates 

are given in Table 6.  The σz parameter was not well estimated for the reference sample and the 

β parameters were not significantly different from zero.  It appears that the transition times 

between different phases are relatively independent.  To further explore this issue, we also fit the 

ten-parameter multivariate-independent model given by equation (9) obtaining log likelihoods of  

-671.83 for the reference sample.  The Akaike Information Criterion (AIC) can be used to select 

the between the two models (Akaike 1973, 1992; Burnham and Anderson 1998).  The difference 

in AIC is 117, suggesting the latent-trait model does provides a better fit to the data. 

The parameter estimates derived from the reference sample by the latent-trait model were 

used, in turn, to estimate the parameters of a Gompertz-Makeham age-at-death distribution using 

data from the target sample.  The Gompertz-Makeham model has three parameters, α1, α2, and βg 

(see Wood et al., this volume, for details).  Parameter estimates for the resulting age-at-death 

distribution are given in Table 7.  Additionally, target ages were provided for the target sample, 

so we could estimate the parameters of the Gompertz-Makeham directly from the known target 

ages (Table 7).  The parameters recovered by the latent trait model were very close to the 

parameters used for the simulation as well as the parameters estimated from the known ages of 

the target sample.  Clearly, the βg parameter was not well estimated by the latent trait method for 

the target sample.  Nevertheless, the difference in AIC between the latent trait model and the 

multivariate independent model was 14.52 indicating that latent-trait model fits somewhat better 

than the model assuming independence.   

Age-at-death distributions estimated from known ages and by the latent trait method are 

shown in Figure 3.  The distributions recovered from the known ages and by the latent trait 
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method are not significantly different, but we note that the standard errors recovered by the latent 

trait method are quite large. 

We conclude that the latent-trait model does a reasonable, though not perfect, job of 

recovering the parameters in these simulated age-at-death distributions.  One of the difficulties of 

the estimates presented here is that the standard errors may have been poorly estimated by errors 

introduced in the numerical integration.  Methods that use Markov Chain Monte Carlo for the 

integration and bootstrapped estimates of parameter uncertainty would be useful refinements of 

the method. 

 

Conclusions 
We have presented a method for estimating an age-at-death distribution from multivariate 

skeletal data with possible missing values.  The method adheres rigorously to the Rostock 

protocol outlined in other parts of this book.  Thus, the method complements those used by 

Hermann and Konigsberg (Chapter 10) and Müller and Love (Chapter ??).  It is also consistent 

with methods found elsewhere in the recent paleodemographic literature (Konigsberg and 

Frankenberg 1992; Konigsberg and Holman 1999; O'Connor 1995). 

We would argue that skeletal data, by their nature, absolutely demand multivariate 

treatment.  But three additional criteria must be met for any multivariate method to be of use to 

the practicing paleodemographer.  First, the method must not assume that traits are statistically 

independent within an individual (for biological reasons, skeletal traits are unlikely to meet this 

assumption).  Second, the number of parameters to be estimated must not grow as an exponential 

function of the number of traits (paleodemographic samples are too small to support estimation 

of a large numbers of parameters).  Third, the method must be able to accommodate missing data 

for some skeletons (imperfect preservation almost inevitably results in missing data).  We have 

developed the latent trait-method in response to these demands.  Although it is a method of 

intermediate computational complexity – two nested integrals appear in the likelihood for the 

parameters of the age-at-death distribution – even this degree of complexity may require 

stochastic methods of integration such as the Markov chain Monte Carlo methods used in the 

chapter by Hermann and Konigsberg.  Nonetheless, the latent trait approach represents a major 

gain in practicality over methods that estimate the full variance-covariance matrix among age 



Estimating Age-at-Death Distributions. . . ., Holman, Wood, and O'Connor 

 

 23 

indicators – and a major gain in realism over methods that assume that indicators are 

independent. 

The usefulness of this method (or any other multivariate method) rests, in part, on the 

development of true multivariate reference samples.  The ideal reference sample would include 

numerous binary and continuous indicators from many parts of the skeleton, maximizing the 

chance that at least one indicator would be available for any skeleton.  We eschew the notion of 

developing any stage or phase indicators — as we argued earlier, staged traits are likely to reflect 

multiple semi-independent processes that would be better coded as a series of binary traits or as a 

continuous trait. 

Acknowledgments 
We thank Jesper Boldsen, Rob Hoppa, Lyle Konigsberg, Brad Love, George Milner, 

Hans-Georg Müller, Bethany Usher, and Jim Vaupel for helpful comments and discussion.  This 

research was supported in part by F32-HD07994 and NICHD Population Center Grant 1-

HD28263. 

 



Estimating Age-at-Death Distributions. . . ., Holman, Wood, and O'Connor 

 

 24 

Literature Cited 

Acsádi G and Nemeskéri J (1970) History of Human Life Span and Mortality. Budapest: 
Akademiai Kaido. 

Akaike H (1973) Information theory and an extension of the maximum likelihood principle.  In 
Second International Symposium on Information Theory, ed. B.N. Petrov and F. Csaki, 
pp. 268-281. Budapest: Hungarian Academy of Sciences. 

Akaike H (1992) Information theory and an extension of the maximum likelihood principle.  In 
Breakthroughs in Statistics, ed. S. Kotz and N. Johnson, pp. 610-624. New York: 
Springer Verlag. 

Bass WM (1971) Human Osteology: A Laboratory and Field Manual of the Human Skeleton. 
Columbia, Mo.: Missouri Archaeological Society. 

Bock RD and Gibbons RD (1996) High-dimensional multivariate probit analysis. Biometrics, 52, 
1183-1194. 

Bocquet-Appel JP and Masset C (1982) Farewell to paleodemography. Journal of Human 
Evolution, 11, 321-333. 

Bocquet-Appel JP and Masset C (1985) Paleodemography: Resurrection or ghost? Journal of 
Human Evolution, 14, 107-111. 

Brooks ST (1955) Skeletal age at death: The reliability of cranial and pubic age indicators.  
American Journal of Physical Anthropology, 13, 567-597. 

Buikstra JE and Konigsberg LW (1985) Paleodemography: Critiques and controversies. 
American Anthropologist, 87, 316-333. 

Burnham KP and Anderson DR (1998) Model Selection and Inference: A Practical Information-
Theoretic Approach.  New York: Springer Verlag. 

Chib S and Greenberg E (1998) Analysis of multivariate probit models.  Biometrika, 85, 347-
361. 

Edwards AWF (1972) Likelihood. London: Cambridge University Press. 

Eliason SR (1993) Maximum Likelihood Estimation: Logic and Practice. Newbury Park, Ca.: 
Sage Publications. 

Gilbert BM and McKern TW (1973) A method for aging the female Os Pubis. American Journal 
of Physical Anthropology, 38, 31-38.  



Estimating Age-at-Death Distributions. . . ., Holman, Wood, and O'Connor 

 

 25 

Holman DJ and Jones RE (1998) Longitudinal analysis of deciduous tooth emergence II: 
Parametric survival analysis in Bangladeshi, Guatemalan, Japanese and Javanese 
children. American Journal of Physical Anthropology, 105, 209-230. 

Holman DJ (2000) mle: A Programming Language for Building Likelihood Models. Version 2 
(Software and manual).  http://faculty.washington.edu/~djholman/mle/ 

Hougaard P (1986) A class of multivariate failure time distributions. Biometrika, 73, 671-678. 

Iscan MY, Loth SR and Wright RK (1984) Age estimation from the rib by phase analysis: White 
males.  Journal of Forensic Science, 29, 1094-1104. 

Iscan MY, Loth SR and Wright RK (1985) Age estimation from the rib by phase analysis: White 
females.  Journal of Forensic Science, 30, 853-863. 

Jackes MK (1992) Paleodemography: Problems and techniques. In Skeletal Biology of Past 
Peoples: Research Methods, ed S.R. Saunders and M.A. Katzenberg, pp. 189-224. New 
York: Wiley-Liss. 

Klein JP, Pelz C and Zhang M (1999) Modeling random effects for censored data by a 
multivariate normal regression model. Biometrics, 55, 497-506. 

Konigsberg LW and Frankenberg SR (1992) Estimation of age structure in anthropological 
demography. American Journal of Physical Anthropology, 89, 235-256. 

Konigsberg LW, Frankenberg SR and Walker RB (1997) Regress what on what? 
Paleodemographic age estimation as a calibration problem. In Integrating Archaeological 
Demography: Multidisciplinary Approaches to Prehistoric Population, ed. R.R. Paine, 
pp. 64-88. Carbondale, Ill.: Southern Illinois University Press.  

Konigsberg L and Holman DJ (1999) Estimation of age at death from dental emergence and 
implications for studies of prehistoric somatic growth. In Human Growth in the Past: 
Studies from Bones and Teeth, ed. R.D. Hoppa and C.M. Fitzgerald, pp. 264-289. 
Cambridge: Cambridge University Press. 

Long JS (1997) Regression Models for Categorical and Limited Dependent Variables.  Thousand 
Oaks, CA: Sage. 

Lovejoy CO, Meindl RS, Pryzbeck TR and Mensforth RP (1985) Chronological metamorphosis 
of the auricular surface of the ilium: A new method for the determination of adult skeletal 
age at death. American Journal of Physical Anthropology, 68, 15-28. 

McCullagh P (1980) Regression models for ordinal data.  Journal of the Royal Statistical 
Society, 42, 109-142. 



Estimating Age-at-Death Distributions. . . ., Holman, Wood, and O'Connor 

 

 26 

McKern T and Stewart TD (1957) Skeletal Age Changes in Young American Males. Natick, 
Mass.: US Army Quartermaster Research and Development Center.  

McKelvey RD and Zavoina W (1975) A statistical model for the analysis of ordinal level 
dependent variables.  Journal of Mathematical Sociology, 4, 103-120. 

Meindl RS and Lovejoy CO (1985) Ectocranial suture closure: A revised method for the 
determination of skeletal age at death based on the lateral-anterior sutures.  American 
Journal of Physical Anthropology, 68, 57-66. 

Nelson W (1982) Applied Life Data Analysis. New York: John Wiley and Sons. 

Walker RA and Lovejoy CO (1985) Radiographic changes in the clavicle and proximal femur 
and their use in the determination of skeletal age at death. American Journal of Physical 
Anthropology, 68, 67-78. 

O'Connor KA (1995) The Age Pattern of Mortality: A Micro-analysis of Tipu and a Meta-
analysis of Twenty-nine Paleodemographic Samples. Doctoral Dissertation, Department 
of Anthropology, State University of New York, Albany, N.Y. 

Pickles A (1985) An Introduction to Likelihood Analysis. Norwich: Geo Books. 

Snow CC (1983) Equations for estimating age at death from the pubic symphysis: A 
modification of the McKern-Stewart method. Journal of Forensic Sciences, 28, 864-870. 

Stewart TD (1979) Essentials of Forensic Anthropology, Especially as Developed in the United 
States. Springfield, Ill.: Charles C. Thomas. 

Todd TW (1920) Age changes in the pubic bone. I. The male White pubis.  American Journal of 
Physical Anthropology, 3, 285-339. 

Walker PL, Johnson JR and Lambert PM (1988) Age and sex biases in the preservation of human 
skeletal remains. American Journal of Physical Anthropology, 76, 183-188. 

Wood JW, Holman DJ, Weiss KM, Buchanan AV and LeFor B (1992) Hazards models for 
human population biology. Yearbook of Physical Anthropology, 35, 43-87. 



Estimating Age-at-Death Distributions. . . ., Holman, Wood, and O'Connor 

 

 27 

Table 1   Number of individuals in the Tipu collection by number of age-at-death indicators 
(O’Connor 1995). 

 

Number of age 

indicators 

Number of 

individuals1 

% 

1 166 31 

2 152 29 

3 149 28 

4 45 8 

5 15 3 

6 5 1 

 

1N = 532 juveniles and adults.  Indicators for adults are given in Table 2; indicators for subadults 
include tooth development and eruption, epipysial union, diaphyseal length, and tooth wear. 



Estimating Age-at-Death Distributions. . . ., Holman, Wood, and O'Connor 

 

 28 

Table 2   Number of adult individuals with particular aging indicators in the Tipu skeletal 
collection (O’Connor 1995).  
 

Age indicator N 

cranial suture closure 143 

tooth wear 139 

auricular surface 128 

cemental annulation 37 

pubic symphysis 33 

vertebral osteophytosis 33 

Total 255 
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Table 3   The Todd pubic phases (Todd 1920). 

 

Modal Phase Age Range 

I 18-19 

II 20-21 

III 22-24 

IV 25-26 

V 27-30 

VI 30-35 

VII 35-39 

VIII 39-44 

IX 45-50 

X 50+ 
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Table 4   McKern and Stewart sum of three pubic component scores (Snow 1983). 

 

Total Score Age range Mean age 

0 17 17.2 

1-2 17-20 19.04 

3 18-21 19.7 

4-5 18-23 20.8 

6-7 20-24 22.4 

8-9 22-28 24.1 

10 23-28 26.1 

11-13 23-39 29.2 

14 29+ 35.8 

15 36+ 41.0 
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Table 5   Stage-specific transition variables (T1 to T5) defined for a 6-phase marker such as a 
McKern-Stewart pubic symphysis component. 

 

Stage T1 T2 T3 T4 T5 

Phase 0 0 0 0 0 0 

Phase 1 1 0 0 0 0 

Phase 2 1 1 0 0 0 

Phase 3 1 1 1 0 0 

Phase 4 1 1 1 1 0 

Phase 5 1 1 1 1 1 
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Table 6   Parameter estimates for the reference distribution of 587 individuals found by the latent 
trait method.  The loglikelihood is -608.09. 
 
Parameter Estimate SE 

σz 0.13 0.28 

µ1 3.06 0.01 

µ2 3.21 0.03 

µ3 3.29 0.02 

µ4 3.63 0.03 

µ5 4.38 0.11 

σ1 0.10 0.04 

σ2 0.10 0.04 

σ3 0.11 0.03 

σ4 0.20 0.05 

σ5 0.33 0.09 

β2 -10.7 20.4 

β3 -13.2 26.2 

β4 -10.5 22.1 

β5 -15.0 33.8 
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Table 7   Parameter values used to simulate the example target sample, and parameter estimates 
for the target age-at-death distributions for the target sample.  Log likelihoods for the known-age 
model and the latent trait model were -607.77 and -222.61 respectively. 
 
Parameter 

name 

Simulation 

parametera 

known-age 

estimatesb (SE) 

Latent trait estimatesc 

(SE) 

α1 0.01 0.013 

(0.003) 

0.012 

(0.006) 

α2 0.001 0.00009 

(0.00012) 

0.00007 

(0.0006) 

βg 0.1 0.11 

(0.02) 

0.13 

(0.15) 

a.  Parameter value used to simulate the target sample (see Chapter 10) 

b.  Parameters recovered by direct estimation of known ages in the simulated target sample. 

c.  Parameters recovered by the latent-trait method. 



Estimating Age-at-Death Distributions. . . ., Holman, Wood, and O'Connor 

 

 34 

Figure Captions 

Figure 1   (Upper panel) The relationship between latent growth rate variable z and the average 

age at which a child will emerge five deciduous teeth.  (Lower panel) The distribution of z 

among children in the population. 

Figure 2   The effect of zβz on the distribution of times to transition.  The distribution of the 

latent trait z is normal with µ = 18 and σ = 4.  (Upper panel) Accelerated failure time model in 

which zβz shifts the distribution rigidly to the left or right.  (Lower panel) Proportional hazards 

model, in which zβz changes both the mean and the variance of the distribution. 

Figure 3   Age-at-death distribution for the target sample based on estimated parameters in Table 

7.  The solid line (± one standard error bars) shows the distribution recovered directly from the 

known ages of the target sample.  The dashed line is the target distribution recovered by the 

latent trait method using pubic symphysis indicators, and dotted lines are ± one standard error. 
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FIGURE 1  
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FIGURE 2  
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FIGURE 3  
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