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Abstract: 

 

 Geneticists seeking to understand the evolution of HIV-1 among populations of 

human hosts generally apply models that assume the hosts belong to a single panmictic 

population. Social science research indicates that the network patterns over which HIV-1 

is spread are far from random, but the effect of these patterns on the genetic diversity of 

HIV-1 and other sexually transmitted pathogens has yet to be examined. This study uses 

a graph-theoretic framework known as exponential random graph modeling (ERGM) to 

simulate seven types of dynamic partnership networks resembling those observed in real 

human populations and to simulate HIV transmission and mutation in these networks.  

The means of the resulting mismatch distributions reveal that effective viral population 

size for the structured mixing populations is 10-24% higher than that observed for viral 

populations of the same size generated in a randomly mixing human population. The 

author discusses implications for HIV-1 phylogenetics along with the potential for 

ERGM to provide a general framework for addressing these issues. 

 



 Understanding the nature of genetic variation in HIV-1 is a crucial public health 

issue, since the high mutation rate of this retrovirus leads to myriad genetic forms that 

may exhibit different properties of infectivity, virulence, or susceptibility to vaccines and 

medicines.  Geneticists have spent considerable effort both in describing the distribution 

of this variation globally or in a given community, and in uncovering the functional 

differences these forms create.  These tasks are complicated by the fact that the object of 

study forms a meta-population with different evolutionary forces operating at two levels. 

That is, each HIV-1-infected host contains a local pathogen population (often called a 

“quasi-species” in the viral literature), and these populations are then linked together 

epidemiologically and phylogenetically into a single connected meta-population.  Genetic 

diversity among viral particles within each host is a function of the forces population 

geneticists are used to thinking of: mutation, drift and selection, both host-mediated and 

otherwise.  The forces shaping genetic diversity among the components of this meta-

population include not only these more traditional population genetic concepts, but also 

the patterns of host behavior that allowed for pathogen transmission among the hosts.  

Considerable work on the genetics of metapopulations already exists (e.g. Hanski and 

Gilpin 1997); however, the metapopulation dynamics of HIV-1 are unique in a number of 

ways (new demes founded at rates determined by patterns of human sexual behavior, 

demes completely isolated once founded, guaranteed extinction of demes ~5-20 years 

after their founding) and require an exploration that incorporates these unique features. 

 Much work has now been done to relate patterns of HIV-1 genetic diversity to 

population history for host populations that are either constant or growing in some 

parametric trajectory (e.g. Grassly et al. 1999, Holmes et al. 1999, Pybus et al. 2000).  



However, such work almost always assumes that the mixing among these hosts is 

completely random, even though common sense and a large body of social science 

research make it clear that for sexually transmitted infections this is never the case (e.g. 

Laumann et al. 1994).  Such substructure can easily be imagined to introduce 

irregularities into the growth patterns of the epidemic and consequently into the genetic 

diversity within that epidemic.  For instance, a population that is strongly divided into 

sub-populations should exhibit a punctuated equilibrium in infection rates as the virus 

spreads rapidly within sub-populations but then waits a relatively long time to pass into 

another sub-population (Hanski and Gilpin 1997).   

 In this paper I present a graph-theoretic framework for quantifying patterns of non-

random (“structured”) host mixing and incorporating them into population genetics.  This 

framework involves a class of probability models, known as exponential random graph 

models, for the stochastic microsimulation of networks of social relationships. I apply 

these models to the simulation of populations undergoing six types of structured mixing 

(100 populations per mixing type), and simulate HIV-1 transmission and evolution within 

these populations. I then compare the genetic variation resulting from the various forms 

of mixing networks to that resulting from a panmictic population by sampling one 500-

nucleotide viral sequence from each infected host and examining the pairwise genetic 

distances between sampled sequences in each population.  The selection of specific 

model parameterizations to examine within this framework is informed by research on 

community-level sexual network structure from the social sciences. 

 

 



BACKGROUND 

 

HIV-1 phylogenetics: Applications of phylogenetic methods to HIV-1 were at first 

largely focused on determining patterns of relatedness within some subsection of the 

epidemic by elucidating phylogenetic relationships among a sample of sequences.  The 

patterns of relations reconstructed ranged from single infection chains (e.g. Ou et al. 1992 

for a dental practice in Florida), through intermediate population and geographic levels 

(e.g. Leigh Brown et al. 1997 for relations among sequences in six cities in the British 

Isles) to global and multi-species relations (e.g. McCutchan et al. 1992 for relationships 

among the major geographical subtypes of HIV-1). 

   Recent work has focused on reconstructing population dynamics of the virus, most 

commonly the size and growth rate of some section of the epidemic through time.  This 

literature has used increasingly sophisticated models and techniques to address the 

effective size of the viral pool among hosts for different strains of the virus in different 

regions and times. Grassly et al. (1999) used mismatch distributions to compare the 

population history of HIV-1 subtypes A and B.  Holmes et al. (1999) used a technique 

developed earlier (Nee et al. 1994 and 1995) to compare the reconstructed number of 

phylogenetic lineages through time to that expected under a variety of population history 

models, including constant population size, linear growth, and exponential growth.  In 

Pybus et al. (2000) they extended this method to include the generation of maximum 

likelihood estimates of the effective population size at all points in the past.  In general, 

however, although these models have expanded their methods of analysis and the range 

of population growth patterns that they cover, they all continue to assume that mating is 



random.  One exception is Grassly et al. (1999), who compare their global subtype 

mismatch data to models of population panmixis and binary subdivision.  They found that 

at this global level, the improved fit of the data to the subdivision model was not 

sufficiently large to warrant the increase in model complexity. 

 These researchers were not trying to determine directly the actual census size of the 

host population for a given strain. Central to their approach is the concept of effective 

population size (Ne), the mathematical construct referring to the hypothetical population 

(known as a Wright-Fisher population) that would yield an observed mean level of 

genetic diversity if all members had an equal chance of contributing offspring to the next 

generation. “Equal chance” requires a lack of strong selection, and implies certain 

outcomes—among them, that the number of offspring left in a subsequent generation by 

each member of the prior generation follows a Poisson distribution, and that there is no 

correlation between the number of offspring left by successive generations in the same 

lineage. Genetic diversity in this type of population is generated in well-understood ways.  

 Of course few real populations fit all of the assumptions of the Wright-Fisher model.  

The value of this framework comes from the numerous formulas that convert effective 

population size into census population size for different violations of the model 

assumptions. This provides a common metric for comparing populations and for testing a 

variety of hypotheses about their demographic history or their exposure to selection.  

Unfortunately, the complex partnership patterns we see in human sexual/drug-sharing 

networks do not fit neatly into any of the existing extensions.  For instance, any level of 

assortative mixing by partner number (that is, highly active people tending to have highly 

active partners) means that there will be a correlation among offspring number in 



successive generations of the virus by lineage, purely for network reasons.  Grassly et al. 

(1999) have suggested that it is reasonable to assume a lack of correlation among 

generational offspring number; the justification for this statement was that there is no 

known biological difference among strains in terms of infectivity.  There are, however, 

very clear behavioral differences operating among the hosts carrying different lineages, 

and evolutionary outcomes for HIV-1 are dependent jointly on the biology of the virus 

and the behavior of the host.  Other network patterns may also lead to relationships 

among lineages that have not been previously addressed.  This implies that we have little 

means for relating effective population size and census population size in these 

populations, and thus for conducting investigations of HIV-1 evolutionary processes that 

require such estimates.  My goal in this paper will be to begin remedying this situation by 

introducing a graph theoretic approach to modeling sexual partnership patterns.  This 

approach is described in the next section. 

 The genetic outcomes to be examined from these populations include a single 500-

nucleotide viral genetic sequence for each infected actor in each population.  I will use 

the mean of the pairwise genetic distances between these samples from each population 

to compare effective viral population sizes resulting the various types of structured 

mixing to random mixing.  Although this summary measure of genetic diversity is less 

powerful than those based on complete coalescent methods (Felsenstein 1992), the latter 

require populations to be large relative to the samples drawn from them for study, a 

requirement that is not fulfilled in this case. 



 Coalescence theory states that for a haploid organism, effective population size can 

be estimated from the mutation rate and the mean genetic distance between any two 

samples in a population: 

 

2eN δ
µ

=      [Eq. 1] 

 

where µ is the generational mutation rate and δ is the mean genetic distance (i.e. for a 

population of size n, the fraction of sites at which two sampled sequences differ averaged 

over the 
2
n 

 
 

 pairs). Equation 1 is based on the observation of Watterman (1975) that the 

expected amount of time in the past that two sequences in a Wright-Fisher population of 

size N have their most recent common ancestor (MRCA) is N generations. Thus between 

any two contemporary sequences there is an expected lineage time on which to 

accumulate mutations of 2N (the distance from MRCA to the first sequence plus the 

distance from MRCA to the second sequence).  The expected genetic distance between 

two samples δ is thus simply a product of amount of mutation time and the mutation rate, 

or 2Nµ.  Ne can then be substituted for N since the effective size of a population is simply 

the size of a Wright-Fisher population with the same δ. 

 The distribution of the mismatch δ can in turn be related to population history for 

certain patterns of changing population size.  In a stable panmictic population, for 

instance, the mismatch distribution is generally ragged. For a population that has been 

growing exponentially, Slatkin and Hudson (1991) show that when 0 1N r  the 

mismatch distribution is Poisson with a mean of: 



 

( )02 ln N r
r

µ γ
δ

 − =     [Eq. 2] 

 

where N0 is the ending population size, r is the exponential growth rate per generation, 

and γ is Euler’s constant, 0.577.  Unfortunately, no such formulas have been worked out 

to link δ to viral population dynamics resulting from hosts with complex mixing patterns. 

 Any attempt to remedy this situation must consider the elaborate intrahost dynamics 

of the virus as well as interhost.  Because of the virus’s high mutation rate and a type of 

recombination that it undergoes during replication, each infected person harbors an entire 

quasispecies of HIV-1; Vartanian et al. (1992) estimate that among ~1010 infected host 

cells during clinical latency there exist on the order of 108 different viral genetic 

sequences.  This set of variants will be constantly changing through drift, mutation and 

selection as viral particles die and new ones appear.  Towards the end of infection, 

pairwise genetic differences for HIV-1 sequences within a single host may be as high as 

10% (Ahmad et al. 1995).  All of this would seem to preclude any hope of understanding 

relationships among viral sequences in different hosts.   

 Despite these elaborate intrahost dynamics, researchers have been successful in 

applying the molecular clock to HIV-1.  For instance, Leitner et al. (1996) used a unique 

epidemiological case—a chain of nine individuals in Sweden linked together in a 

transmission cluster with known transmission times—to demonstrate molecular clock-

like behavior over a period of 14 years.  There appear to be many reasons why the 

epidemiological molecular clock is more robust to intrahost dynamics than one would 

initially expect: only a small fraction of infected cells are replicating, each new individual 



seems to be infected with only a single strain, recombination prevents strong selective 

sweeps, and many of the selection pressures are diversifying rather than purifying.  This 

does not mean that intrahost dynamics can simply be ignored, however, and the basic 

elements will be incorporated into the model of interhost phylogenetics used in this 

paper, as shown below. 

 

Network epidemiology:  The methods used here to model transmission are drawn from 

social network analysis, an outgrowth of both graph theory and social theory in which 

analysis focuses not only on a set of social agents but on the relationship ties between 

pairs of those agents as well.  Within this framework I focus on a probability model class 

known as exponential random graph modeling, or p* (p-star) modeling, which was first 

proposed in the spatial statistics literature (Besag 1974), expanded upon by Frank and 

Strauss (1986) and Strauss and Ikeda (1990) and introduced to social network analysis by 

Wasserman and Pattison (1996).  This approach derives a model for partnership 

formation by defining probabilities for each possible graph (or network; the terms are 

used interchangeably) of size n (i.e. containing n actors).  Let xij represent the value of the 

tie between nodes i and j; if, as here, relationships are binary (xij = 1 if a tie is present or 0 

if a tie is absent) and non-directed (xij = xji ∀ i,j), then a graph x is defined by its 
2
n 

 
 

 tie 

values { }1,2 1,3 1,4 2,3 1,, , .... .... n nx x x x x x −= . In its general form, the model represents the marginal 

probability that a random graph X of size n will take on a value x as: 
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θ
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where z(x) is a vector of network statistics, θ is a vector of parameters, and c(θ) is a 

normalizing constant to ensure that the probabilities sum to one over all graphs of node 

size n. Examples of commonly used z statistics include the number of ties in the graph, 

the number of nodes with a certain number of ties over the observed time period, or the 

number of triads (sets of three nodes who possess all three pairwise ties). 

 This representation is so general as to include any possible probability model based 

on network statistics (Besag 1974); some guidance is thus required in choosing specific 

parameterizations.  This can be provided by the growing number of studies that have 

collected some form of network data on sexual relationships, as well as modeling work 

showing the effect of network structure on HIV-1 transmission patterns.  These include 

(among others) studies in Colorado Springs, Colorado (Klovdahl et al. 1994); New York, 

New York (Martin 1987, Morris and Dean 1994); Seattle, Washington (Garnett et al. 

1996); Brooklyn, New York (Friedman et al. 1997); suburban Atlanta, Georgia 

(Rothenberg et al. 1998); Iceland (Haraldsdottir et al. 1992); Nigeria (Orubuloye et al. 

1992); and Thailand (Morris et al. 1996). The common observation of both empirical 

studies and modeling efforts is that network structure matters for epidemic outcomes 

above and beyond the levels of activity. Assortative mixing by social attributes (race, age, 

location, occupation) is commonly observed and has been shown through modeling to 

affect the dynamics of disease spread.  For instance, Morris and Dean (1994) simulate 

observed assortative mixing patterns by age among gay men in New York City and 

demonstrate that this bias, if maintained in the long-term, should reduce prevalence 

among young gay men 40% below what it would be if mixing were random.  The 



existence of a “core group” that is not only highly active but preferentially mixes with 

other highly active people can also be important (Garnett et al. 1996), although perhaps 

more so for short-term curable STDs than for HIV.  Watts and May (1992) and Morris 

and Kretzschmar (1997) demonstrated that the timing of partnerships (concurrent vs. 

serial) is a strong determinant of prevalence.  Another important pattern includes the 

existence of  “bridges,” or individuals who serve as epidemiological links between 

groups that otherwise would have no interaction, as men do when they have both 

commercial and non-commercial female sex partners (Morris et al. 1996).  Unfortunately, 

none of these studies have sequenced HIV-1 sequences from seropositive subjects, 

allowing for a simultaneous examination of network structure and phylogenetics in a real 

population.  Instead, I draw upon the qualitative observations of these studies to 

determine the types of mixing patterns to examine. 

 

 

METHODS 

 

 From the above literature, I chose seven sets of mixing rules to examine: one 

panmictic population (random model), four populations divided into equally active 

subgroups with internal preferential mixing (assortative models), one population with a 

small highly active subgroup (core model), and one bridge model. This last population 

consists of husbands, wives, and non-married females; each husband/wife pair maintains 

their relationship throughout the course of the simulation, while husbands may have 

simultaneous ties with non-married females.  Details of the individual models are listed in 



Table 1, while the z statistics and associated θ parameters necessary to create these 

models are listed in Table 2.  These values were calculated using a likelihood approach 

described by Strauss and Ikeda (1990)1. 

 Each model contains 200 actors sharing an expected 200 partnerships at any moment 

in time.  Populations are small since computing needs for network simulation generally 

scale with the square of the population size, a continuing limitation on network-based 

methods.   Partnerships contain two actors, so 200 partnerships translates into an average 

of two partnerships per person at any moment.  The actual number of ties is free to 

fluctuate stochastically around this expected value with probabilities determined by the 

model described below.  Having equal activity levels implies that systematic differences 

in outcome should relate to the pattern of these partnerships and not their magnitude.   

 For each model, 100 populations were simulated, each for a duration of ten years.  

The exception is the random model, which served as the basis against which all other 

populations were compared; the analysis used below requires multiple random 

populations at each of the infected host sizes observed in the other populations, and 

obtaining these required 300,000 random populations to be simulated. 

 The basic framework used in this paper comprises three steps: (1) simulation of 

dynamic social networks (i.e. in which partnerships form and dissolve over time); (2) 

simulation of HIV-1 transmission within those networks; and (3) simulation of viral 

evolution among those infected hosts.  The three components of the simulation model 

were programmed in Delphi, and the project is available for download at 

http://www.stat.washington.edu/~goodreau. 

                                                 
1 Note that Strauss and Ikeda refer to the result of this method as a pseudolikelihood; however, in models such as these in which the 
probability of each tie is independent of the existence of all other ties, their method yields the true likelihood. 



 

Dynamic network simulation:  Dynamic networks of social relationships are modeled 

using the exponential random graph formulation in Eq. 3.  The presence of c in the 

denominator makes it difficult to express these probabilities explicitly for all but the 

smallest of graphs. However, Markov chain Monte Carlo (MCMC) can be used to draw 

samples from this distribution with the proper frequencies.  The algorithm used here is a 

Metropolis algorithm adopted for network data (Gilks et al. 1996, Crouch and 

Wasserman 1998), and consists of many loops of the following steps: 

 

1. Randomly select two nodes i and j. 

2. Calculate ∆zij(x), the vector of change statistics for all z statistics in the model.  

This refers to the amount by which these statistics change when the relationship 

between i and j is toggled from its current state to the opposite state. 

3. Calculate the “acceptance probability ratio”: 

 

( )Pr( )
exp ( )

Pr( )
ij T

ij
ij

X toggled value rest of graph
L z x

X current value rest of graph
θ

=
= = ∆

= . 

4. If L ≥ 1 (i.e. if the toggled network has an equal or higher probability than the 

untoggled), accept the toggle as the updated state. 

5. If L < 1, then 

a. Select a random number r from a uniform (0,1) distribution. 

b. If L > r then accept the toggle as the updated state; otherwise retain the 

original tie value as the updated state. 



6. Record the updated state of the entire network. 

 

The basic logic is to select a random movement to a nearby point in the multidimensional 

network space, use a Metropolis rule to decide whether to accept the step or remain at the 

current value, and record the position where the chain then rests.  The Metropolis rule 

guarantees that the stationary distribution of the chain equals the probability distribution 

of Eq. 3 that we were unable to calculate directly (Metropolis et al. 1953).  The chain has 

the basic Markov property that although any two consecutive points in the chain are 

dependent, as the number of steps between two points in the chain increases this 

dependence disappears in the limit.   

 Exponential random graph models with MCMC are generally used to simulate static 

networks from a probability model of network structure.  However, since networks at 

consecutive steps in the chain are either identical to one another or differ by one tie, this 

approach also provides a simple way to approximate dynamic networks.  In order to 

make this process dynamic, I allow consecutive steps of the chain to represent 

consecutive time periods, with each period drawn from an exponential distribution with 

parameter λs.  This provides an explicit model of network change while still retaining the 

instantaneous probability distribution of the static model2.  All models share the same λs, 

set at the value that would correspond to a mean relationships duration of 1460 days (4 

years) in a panmictic population (λs = 13.63).     

                                                 
2 In general there is no guarantee this approach will yield a chain that resembles a real dynamic network process on the local scale.  

However, the relatively simple model parameterizations used here should at least ensure that the chain mixes well locally.  More 

realistic methods for dynamic network modeling in the ERGM framework are still in development. 



 The first chain begins with an empty graph (no ties present) and is run through a one 

million-iteration burn-in before beginning the clock.  This virtually eliminates the 

dependence on the initial conditions.  After the end of one dynamic network, the chain is 

run though 100,000 steps before beginning the next, in order to prevent dependence 

among graphs.    The outcome of this process is a set of 100 populations for each model 

(300,000 for the random model), each represented as a vector of all partnerships that 

existed at some point over the ten year simulation period, including the identity of the 

actors in the partnership and its starting and ending dates. 

 

Viral transmission:  Modeling viral transmission requires a value for infectivity per 

serodiscordant couple at any given time and a method for bookkeeping those discordant 

couples.  I adopt a constant, universal probability of transmission within each 

serodiscordant couple.  This obviously ignores many sources of heterogeneity, including 

variation in types of partnership, time since infection of first partner, number of acts 

engaged in within partnership, number of other partnerships the actors are in, and actor 

attributes such as STD infection or genetic resistance to HIV-1 infection.  However, 

ignoring these variations makes it possible to state that differences in outcome are due 

solely to network structure, since that structure is the only thing that varies among the 

populations. Further work in this vein should benefit from more realistic views of the 

heterogeneity of infectivity. 

 Most existing estimates of infectivity are expressed as infectivity per single act or per 

person-year (i.e. the probability of an active person becoming infected per year), whereas 

the model I use here requires a measure of infectivity per serodiscordant partnership per 



day. I used simulation to derive an infection parameter from information about incidence 

of HIV-1 infection within American IDU and homosexual male communities, which has 

been estimated in the range of 1.5-1.9% per year (e.g. Moss et al. 1994, Holmberg et al. 

1996). An infectivity level of .0007 infections per serodiscordant partnership per day 

resulted in an annual incidence rate of 1.57% in the panmictic population and was 

selected for all simulations.  This method is rather ad hoc, and is of limited usefulness in 

generating an estimate with wide applicability. 

 Since infectivity between serodiscordant partners is assumed to be constant and 

memoryless, each serodiscordant partnership has an exponentially distributed waiting 

time until transmission with parameter λt.  The expected waiting time until the first 

transmission among all serodiscordant couples is thus also exponentially distributed, with 

parameter equal to the product of λt and the number of serodiscordant partnerships.  Of 

course, this number changes every time a partnership forms or ends and every time a 

transmission event occurs. Given the list of partnership formation and dissolution times 

generated in the prior step.  I modeled transmission as follows, starting at time t0: 

 

1. Calculate the number of serodiscordant partnerships s. 

2. Draw a random number r from the exponential distribution with parameter sλt. 

3. If this number is less than the amount of time remaining until the next change in s, 

then: 

a. Add r to the current time. 

b. Pick a serodiscordant partnership at random. 

c. Infect the seronegative member of the partnership. 



d. Return to Step 1. 

4. Otherwise: 

a. Advance to the next time at which s changes. 

b. Return to Step 1. 

 

These steps are repeated until the end of the dynamic network period is reached. 

 

Viral evolution:  Each infected host is represented by a single 500-base viral genetic 

sequence; generating these requires a method for taking account of intrahost viral 

dynamics without modeling each host’s entire quasispecies.  I accomplish this by using 

the intrahost dynamics to define a probability distribution for the timing of sequences’ 

most recent common ancestor, or coalescent.  In general an HIV-1-infected host’s 

quasispecies coalesces no earlier than the time at which they were infected, suggesting 

that people are infected by a single viral particle or that some form of competitive 

exclusion occurs early in infection.  If person A infects person B, then the sequences 

sampled from A and B must coalesce within A’s quasispecies sometime between the 

moments of A’s infection and B’s infection.  The intrahost dynamics determine the 

probability distribution for the timing within this interval.   

 Most of the duration of infection is a long latency period during which the effective 

population size of the viral pool is relatively constant.  Researchers have independently 

estimated Ne in this period to be on the order of 103
 (Leigh Brown 1997, Nijhuis et al. 

1998 and Rodrigo et al. 1999; but see Rouzine and Coffin 1999).  The standard 

coalescent approximation formula (e.g. Rodrigo and Felsenstein 1999) states that for a 



population of constant size, the most recent coalescence event among n sequences in a 

population of N sequences should come from an exponential distribution with parameter 

 

( 1)
2c

e

n n
N G

λ −
=       [Eq. 4] 

 

where G = generation length. In the case at hand Ne = 103 and G = 1.5 days, an average of 

the 1.2 day estimate of Rodrigo et al. (1999) and the 1.8 day estimate they cite from 

personal communication with Perelson.  In contrast to this stable equilibrium, the first 

two months of HIV infection are marked by a rapid expansion and sudden contraction in 

the effective population size of a host’s viral pool. Thus any two sequences within a 

single host that have not coalesced within 60 days of initial infection can be assumed to 

coalesce at the point of infection, when rapid expansion begins. 

 Note that if person A infects both person B and C, then the sampled sequences of B 

and C may coalesce with each other (within person A) before either of them coalesces 

with A’s sampled sequence.  That is to say, two people infected by a common partner 

may exhibit more similar viral sequences than either do with that partner.  Even on a true 

phylogenetic tree of a local transmission chain, then, two individuals who cluster together 

may very well have no direct relationship.   

 As with all coalescent models, reconstruction begins at the ending time of the 

simulation and proceeds backwards.  Let us refer to the series of sequences leading to the 

sampled sequence for an individual as their sampling lineage.  The number of potentially 

coalescing sampling lineages (n) within a given actor’s quasispecies changes as one 

proceeds backwards, decreasing by one each time a coalescent event is determined to 



occur, and increasing by one every time a new infection event is reached.  The following 

steps are completed for each infection event (where actor i infects actor j), beginning with 

the most recent:  

 

1. Determine the number of potentially coalescing lineages within actor i (ni), 

including i’s sampling lineage, j’s sampling lineage, and the sampling lineage of 

anyone else i has infected more recently and whose sampling lineage has not yet 

coalesced with that of i. 

2. Determine the most recent coalescence time using Eq. 4. 

a. If this time is more recent than any other infection event involving the 

actor and is not within 60 days of the actor’s own infection date, then a 

coalescence event occurs.  If there are more than two potentially 

coalescing lineages in the actor, the two that coalesce are selected 

randomly. If ni > 1 still then return to Step One. 

b. If the time is less recent than another infection event involving the actor, 

no coalescence occurs yet. 

c. If the time is less recent than the actor’s infection date or less than 60 days 

more recent than the actor’s infection date, all sequences in the actor 

coalesce at her infection date.  

 

 In simulating HIV-1 mutation within these lineages, I use a model that incorporates 

much of the known heterogeneity in HIV-1 microevolution.  This includes Leitner and 

Albert’s (1999) mean mutation rate for the env gene, 6.7 x 10-3 substitutions per base per 



year, or 1.8 x 10-5 substitutions per base per day. It also includes the env nucleotide 

frequencies and transition matrix from Leitner et al. (1997), both shown in Table 3, and 

gamma-distributed inter-site mutation rates, using their point estimate α = 0.384 for env.  

The same set of site-specific mutation rates drawn from this distribution was used in each 

simulation.  The instantaneous mutation rate for site x (µx) is thus the product of the 

overall mutation rate, the relative mutability of the x’s current nucleotide (taken from the 

main diagonal of Table 3b), and x’s gamma mutation factor.  Note that the expected value 

of both the second and third factor is 1, so that the average mutation rate is unaffected.  

The effects of selection and recombination are ignored. 

 Simulation of mutation begins at time t0, when the first person in the population is 

infected from an outside source, and proceeds forward in time.  The initial sequence for 

this person is generated randomly, with nucleotide probabilities chosen according to the 

frequencies given in Table 3b.  Mutations then occur along this lineage by repeatedly 

calculating the current mutation rate µx for each site x; drawing a time until next mutation 

tx for each site from an exponential distribution with mean equal to µx; and selecting 

min{t1…t500}.  The new nucleotide at the mutating site is selected with the relative 

probabilities from the corresponding row in Table 3b.  This process is repeated for all 

other infected actors, with the initial sequence in each’s sampling lineage matching that 

of the sequence to which it coalesces. 

 

 



RESULTS 

 

 In looking at the differences in genetic outcomes between the models, it is important 

to realize that these could simply result from different population sizes, i.e. if there are 

systematically more actors infected in one type of population than another.  In order to 

examine differences in genetic diversity net of potential differences in population size, 

the first step is thus to test whether such differences exist. Figure 1 shows the distribution 

of the number of infected individuals across the 100 runs for each of the six structured 

mixing models and 300,000 for the random model.  Summary statistics for these 

distributions are contained in Table 4, including the results of a test of Kullback-Leibler 

distances between each distribution and that of the random population.  P-values were 

obtained by sampling 100 runs from the random pool, calculating the Kullback-Leibler 

distance for this sample from the original distribution, and repeating 1000 times.  These 

scores show that subdivision into two groups has little effect on prevalence, even when 

those groups are strongly isolated.  All other models have prevalence distributions that 

were significantly different from the random model, with the clustering models having a 

lower average prevalence and the core and bridge models having higher prevalence. 

These results are consistent with the previous work described above showing the effects 

of network structure on prevalence.  It is important to remember that these simulations 

were of finite duration in a closed population, so that these prevalence levels do not 

represent any kind of long-term endemic prevalence figure.   

 Given these systematic differences in census population size, I compared observed 

mismatch means from the various structured populations directly to those observed for 



panmictic populations that yielded the same number of infected hosts.  This comparison 

required a sufficient number of runs of the random model at each of the infected 

population sizes observed in the other models (i.e. from one infected host up through 

133). The random model rarely yielded host sizes at the upper end of this range; hence 

the need for 300,000 runs.  I calculated  the mean of the mismatch distribution δ for each 

of these 300,000 runs.  The distribution of δ for each host population size is summarized 

in Figure 2 by the mean and the upper and lower 95% quantiles. (Note that the 

distribution here refers to the distribution of δ across the many runs of a given size, not to 

the distribution of pairwise differences directly).  Medians are not plotted since the 

distribution of δ was roughly normal at each size, making the median virtually 

indistinguishable from the mean on this graph.  It is clear from Figure 2 that the 

regularity in these distributions breaks down around a host size of 130, when sample 

sizes become small (<25 runs).   

 The bounds containing 95% of the observations at each size allow us to see where the 

outcomes from the structured models fall relative to the greatest part of the panmictic 

populations.  Outcomes for these other populations are graphed against the panmictic 

populations in Figure 3.  We see that many have significantly greater genetic diversity 

than that found in comparably sized randomly mixing host populations, while only one 

run among all of the models has significantly less.  Table 5 shows the number of runs 

outsides the bounds of the random populations for each model.; this makes it clear that 

for all but the bridges model, effective population size lies outside the range of stochastic 

variation of the random population a considerable fraction of the time.  These differences 

thus seem systematic rather than stochastic; given this fact, the last column informs us of 



the average fraction by which the genetic diversity (and therefore the effective population 

size, since they are proportional according to Eq. 1) of each model lies above the mean in 

a panmictic population of the same size.  This value equals: 

 

,

,

100 ,,

,1

1
100

i rand

i rand

x ni x

x ni

δ δ
δ=

−
∑     [Eq. 5] 

 

where δi,x represents the mean of the mismatch distribution for run i of mixing model x, 

ni,x represents the number of infected hosts in run i of mixing model x, and ,x nδ is the 

mean of δ for all runs of model x that that have n infected hosts.  This value ranges from 

a low of 10% for the bridges model to a high of 24% for the two strongly assortative 

models, with a mean of 18% across all six models.  The populations that have greater 

genetic diversity than the random population generally see viral spreads rapidly in one 

section of the population; the virus may then take a while to spread into another cluster, 

or may not at all.  This leads to a number of early divergence events (because of the rapid 

initial spread) but a lower population size than might be expected if that rate had 

continued. 

 Since host population size in the early stages of an epidemic often grows roughly 

exponentially, it is interesting to compare the observed values of δ to those generated by 

Eq. 2 for the appropriate value of N0.  Of course this equation assumes that mixing among 

all viruses in the metapopulation is random, which is obviously not true; even if hosts 

chose their sexual partners randomly, the viral pools of different infected hosts are not 

able to mix together. The process of sampling exactly one sequence from each host adds 



a further wrinkle.  Such a comparison, then, allows us to see the combined effect of 

departures from pure exponential growth in host size, isolation of the hosts’ viral pools 

from each other, and the sampling constraint of one-sequence per host, but does not allow 

us to separate these effects out from one another.   

 The definition of exponential growth states that at time t in the past, 0
rt

tN N e−= .  

Since we know that Nt = 1 at t = 2433.3 generations in the past (3650 days / 1.5 days per 

generation = 2433.3), we can specify r = ln(N0)/2433.3.  This reduces Eq. 2 to 
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with N0 as the only unknown.  (2.7 x 10-5 is the mutation rate per site per generation, 

equal to the daily mutation rate times 1.5 days per generation).  Since each host infected 

more than 60 days contains an effective viral pool of 103, I approximate the total viral 

pool as 103 times the number of infected hosts.  With these assumptions, the δ predicted 

for each infected host size is shown in Figure 4, and the ratio of this value to that 

observed in the random model (i.e. complete panmixis vs. viral metapopulation with 

panmictic hosts) is shown in Figure 5.   The distribution of δ across different population 

sizes follows a qualitatively similar pattern in the two, with the combined effects of 

metapopulation structure and departures from exponential growth reducing this value in 

the simulated population by a factor of 2.0-2.6. 

 

 



DISCUSSION 

 

 HIV-1 research is unique for the large role played by population genetics in the 

practical applications of the field; accurate estimates of viral population size and 

dynamics, both within and between hosts, are important for applications as wide-ranging 

as reconstructing general patterns of viral spread, understanding differences in 

transmissibility of viral genotypes, and testing hypotheses for the transmission of 

antiviral resistance. The work here was a first step in understanding how the network of 

behaviors that spread HIV-1 in the first place can affect the relationship between census 

size and effective population size at the community level.  This relationship differed by 

an average of 18% over that found in randomly mixing populations with the same host 

population size, a figure that could easily be greater in populations with more 

complicated and realistic mixing patterns.   

 In this study I have purposefully left out many forms of complexity that will need to 

be considered by future work in this vein.  Chief among these are the birth/death 

dynamics of real populations and heterogeneity in infectivity by partnership type and 

duration.  The expected effect of ignoring the latter form of heterogeneity is to 

underestimate the importance of short relationships as sources of viral spread.  This will 

have its greatest effect in populations in which short partnerships are relatively important, 

such as those involving commercial sex workers.  In the real world, partnership type and 

duration may also have relevant covariates such as frequency of condom use. Future 

work might consider classifying partnerships into a small number of categories based on 

duration and actor attributes, with different data-derived infectivities per category.   



 This work clearly demonstrated the effect that host mixing structure may have on the 

population genetics of HIV-1; however, this was done through the use of simulation 

rather than analytically, and used only mismatch distributions rather than full 

phylogenetic information.  Ideally we would like a general method for incorporating 

mixing structure directly into formulas for expected values of genetic parameters such as 

the shape of the mismatch distribution or the number of lineages through time in a 

reconstructed tree.  Hopefully, the exponential random graph model framework will 

eventually provide a means for doing so.  This approach possesses the generality to 

describe a far greater range of mixing rules than those examined here, including patterns 

in which individual partnership probabilities depend directly on the status of other 

partnerships.  For many of these cases, however, the interpretability of the resulting 

parameters is not straightforward, although progress is now being made on this front.  As 

this advances, we will hopefully gain the ability to incorporate realistic models of human 

sexual behavior into our analysis of the population genetics of pathogens that are spread 

as a result of this behavior. 

 The practical importance of the observed effects of network structure will of course 

depend on the questions one is examining when applying such methods.  In any type of 

study that uses community-level data on HIV-1 genetic diversity to test hypotheses of 

HIV-1 evolution, the signature of interest could be masked by the confounding effects of 

metapopulation dynamics.  One example is the use of phylogenetic methods to explore 

questions of viral selection pressures between hosts such as those resulting from anti-viral 

drug resistance.  Determining the potential for the spread of drug resistance mutations is 

of fundamental public health importance, and mathematical models have begun to appear 



that address this question (Blower et al. 2001).  Much remains to be done, however, and 

phylogenetic studies could contribute greatly to this important enterprise.   When 

examining community-level viral sequence data for signatures of selection, we will have 

greater power if we have clear and accurate ideas of the genetic patterns that should 

appear in real populations in the absence of selection. 
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Table 1: Population mixing models 

 

Model Abbr. Description 

   

Random Rand All partnerships equally likely 

Two subgroups, 

weak assortivity 

2-strong Population divided into two groups of 100;        

150 intragroup ties and 50 intergroup ties expected 

Two subgroups, 

strong assortivity 

2-weak Population divided into two groups of 100;        

195 intragroup ties and 5 intergroup ties expected 

Eight subgroups, 

weak assortivity 

8-strong Population divided into eight groups of 25;        

150 intragroup ties and 50 intergroup ties expected 

Eight subgroups, 

weak assortivity 

8-weak Population divided into eight groups of 25;        

195 intragroup ties and 5 intergroup ties expected 

Core/periphery Core Population divided into active group of 25 and 

periphery of 175; 30 intra-core ties expected (10 

times more that expected by chance) 

Bridges Bridges Population divided into 95 husbands, 95 wives, 

and 10 non-married females.  Spouses remain 

married throughout, 105 ties between husbands 

and other females expected 

 



In all of the assortative populations (2-strong, 2-weak, 8-strong, 8-weak), individuals 

chose partners preferentially from within their own cluster, but all clusters had equal 

activity.  In the core/periphery group, core members were more active but did not choose 

other core partners with any greater probability than they did periphery members, once 

controlling for overall activity levels. 

 



Table 2: Graph statistics and their associated parameters for each mixing model 

 

Model Z θ 

Random # of ties -4.590

2-strong # of ties 

# of inter-group ties 

-3.907

-3.693

2-weak # of ties 

# of inter-group ties 

-4.174

-1.119

8-strong # of ties 

# of inter-group ties 

-2.426

-4.895

8-weak # of ties 

# of inter-group ties 

-2.708

-2.387

Core # of ties 

# of intra-core ties 

-4.739

2.542

Bridges # of male-single female ties 

# of male-male ties 

# of female-female ties 

-2.085

- ∞ 

- ∞

 

 



Table 3: Allele frequencies and transition matrix for env 

 

A) allele frequencies 

A .4627 

C .1474 

G .1598 

T .2302 

 

 

B) transition matrix 

 A C G T 

A -0.8351 0.2519 0.4599 0.1233

C 0.7909 -1.3932 0.0574 0.5449

G 1.3318 0.0529 -1.5406 0.1558

T 0.2477 0.3488 0.1081 -0.7047

 

(data from Leitner et al. 1997) 



Table 4: Distribution of infected hosts among 300,000 runs of the random (panmictic) 

model and 100 runs of each other model 

 

Model Mean St. dev. KL distance p 

   

Random 29.8 26.1 --- --- 

2-strong 31.1 22.4 0.240 .56 

2-weak 26.1 22.1 0.225  .69 

8-strong 14.5 8.0 1.215 < .001 

8-weak 22.8 20.1 0.380 .01 

Core 65.9 33.4 0.718 < .001 

Bridges 53.8 44.5 1.159 < .001 

 

Kullback-Leibler distances and p-values are for a test comparing the given distribution to 

the random model distribution. 

 



Table 5: Mismatch means compared to the random model 

 

Model Total above 

random 97.5% 

quantile 

Total below 

random 2.5% 

quantile 

Average fractional difference 

in effective population size 

from random mixing1 

    

2-strong 32 0 0.237

2-weak 20 0 0.168

8-strong 19 0 0.238

8-weak 24 0 0.219

Core 22 0 0.133

Bridges 5 1 0.104

 

1See text for formula



Figure 1: Distribution of infected population resulting from 300,000 runs of the random 

(panmictic) population and 100 runs of each of the structured models 
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Figure 2: Mismatch mean for 300,000 runs of the random model, by infected population 

size 
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Mean values are indistinguishable from medians.  Values above x = 130 show the effects 

of small sample sizes. 



 

 

Figure 3: Structured models compared to random model for mean mismatch by 

population size 
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Figure 4:  Values of δ expected for a completely panmictic viral population equivalent to 
observed host sizes 
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Figure 5:  Ratio of observed values of δ  to those expected in a completely panmictic 
viral population of the same size 
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