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RANDOM GRAPHS AND LOGLINEAR MODELS 

ABSTRACT 

 Much progress has been made on the development of statistical methods for 

network analysis in the past ten years.  Building on the general class of exponential 

random graphs, a range of new statistical models have been proposed, including Markov 

graphs, “p*” models, and actor-oriented models, to capture the systematic patterns of 

association and dyadic dependence in networks.  This class of models is directly related 

to the loglinear models used in earlier work to analyze mixing patterns in local network 

data.  Both approaches are based on the exponential family, and the link between them 

turns out to have a number of interesting implications for network analysis generally.  

Random graphs model the probability that two actors are relationally tied given their 

attributes and the rest of the data, while loglinear methods model the probability that two 

actors have specific attributes given that they are relationally tied.  Under dyadic 

independence the two probabilities are related via Bayes’ rule. The modeling frameworks 

do not yield equivalent predicted values except when fully saturated, however, due to 

alternate forms of conditioning.  In practice, the differences are unlikely to be large, but 

the alternate conditioning helps to clarify the strengths and weaknesses of each modeling 

approach, as well as the behavioral assumptions.  Understanding the relationship between 

the two models sheds light on the relationship between local and complete network data, 

and the role that models can play in bridging the traditional gap between them. 
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1.  INTRODUCTION 

For many years the methodology for network analysis has developed along two 

distinct paths, one mathematical, the other statistical.  The mathematical approach is 

based in graph theory and has largely defined the field, providing a conceptual 

framework for thinking about networks and a wide range of summary measures to 

represent network position and structure.  Almost all of the classic network measures – 

like density, centrality, structural equivalence, and cliques -- owe their development to 

researchers working in this tradition.  Textbooks and computer packages for network 

analysis typically have these measures at their core.  They have become the common 

language for network analysis, and have helped to develop our intuitions about the 

complex relational structures we seek to understand. 

 The statistical approach to network methodology is distinguished by the 

additional concern with measuring the variation and uncertainty in the quantities that are 

estimated.  This approach is rooted in probability theory.  While it has given rise to a 

number of different techniques in network analysis, it has, until recently, played a 

relatively minor role in the field.   Traditional statistical methodology, with tractable 

likelihood-based inference, requires observations to be independent.  In network analysis, 

the whole point is that observations are not independent.  As non-likelihood-based re-

sampling methods like the bootstrap and jackknife were developed in statistics during the 

1980s, a number of techniques were adopted for network analysis, including quadratic 

assignment (QUAP) and permutation tests for matrix regression.  These made their way 

into a number of computer packages and have been widely used.  In addition, some non-

model-based techniques like multi-dimensional scaling, correspondence analysis, and 
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cluster analysis have been adapted for network analysis.  Model-based approaches to 

network estimation and inference, on the other hand, have taken longer to develop.  

 Progress in model-based statistical methods for network analysis has been based 

on both theoretical developments and innovations in data collection.  On the theoretical 

side, the goal of modeling the probability that a tie exists between two persons has given 

rise to the sequence of p-models, from the p1 models first proposed in the late 1970s by 

Holland and Leinhardt, to the p* models developed during the 1990s by Wasserman and 

Pattison.  The key statistical advances have involved the definition of the class of 

exponential random graph models (ERGM) that can be used to represent these types of 

processes (Besag, 1974), and the development of estimation techniques, first maximum 

pseudolikelihood (Strauss and Ikeda 1990) and then Markov-Chain Monte Carlo methods 

(Geyer and Thompson 1992, Gilks et al. 1996).   

 The earliest models in this tradition began by representing modest forms of 

dependence between the links:  reciprocity and transitivity.  Holland and Leinhardt (1970, 

1981) made impressive progress exploring the effects of these forms of dependence on 

network structure given the limited computational methods available at the time.  Frank 

and Strauss (1986) took the next logical step, proposing the Markov random graph as a 

general model for local dependence.  The dependence is called Markovian because it 

extends only one step out from each network tie: two ties are dependent if they share a 

node, and independent otherwise.  Following the work of Besag (1975, 1977), Strauss 

and Ikeda (1990) solved the problem of estimation by proposing the use of maximum 

pseudo-likelihood (MPLE), thus making it possible for the first time to estimate these 

models using standard statistical software.  In the last few years, Pattison and Wasserman 
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(citations.  Wasserman and Pattison 1996? ) have pointed out that the class of exponential 

random graph models is not restricted to Markovian forms of dependence.  This class of 

models is in fact very flexible and general, capable of representing such things as 

propensities for larger cycles, small world patterns and latent groups.  For the first time, 

we have statistical models for generalized spatial or temporal dependence in networks.  

Estimation issues continue to pose challenges, and we will need to develop a new set of 

intuitions about graph parameterization, but the main limitation will soon be the 

availability of data, and that is a big change.  

 The other mainstream of statistical models developed for networks during the past 

twenty years was driven by a search for pragmatic approaches to network data collection.  

Almost all of the methods reviewed above, both mathematical and statistical, require the 

equivalent of a network census – data on every node and every link in the network of 

interest.  This has been a serious obstacle to network data collection.  In the early 1970’s, 

however, a number of studies were designed to collect egocentric or local network data 

using slight modifications of standard sample survey methods:  sample the nodes (egos), 

and ask them to report on their partners (alters) and the relations they have with these 

partners (ties).  The most ambitious and well-known studies were the Northern California 

Communities Study (Fischer 1982) and the core discussion partners network module used 

in the General Social Survey (Burt 1984).  Fischer used the local network data to create 

network attributes (e.g. size, composition), which could then be treated as either response 

variables or covariates in a traditional linear model.  More in keeping with the spirit of 

the random graph models, other researchers have used local network data to examine 

biases in the patterns of network partners – what network analysts call homophily, and 

5 



RANDOM GRAPHS AND LOGLINEAR MODELS 

other fields refer to as non-random mixing, with specific examples being assortative or 

disassortative mixing (Marsden 1987 and 1988, Burt 1983).  Typically, this type of 

analysis is conducted by forming a “mixing matrix” from the data – a contingency table 

that cross tabulates the attributes of the respondent (ego) by the attributes of their alter – 

and using a loglinear model to capture the degree of homophily in the matrix.  Net of the 

dependence induced when respondents contribute multiple partners to the matrix, the 

statistical methods here are straightforward—a generalized linear model with a log link 

function and Poisson errors—and estimation is routine.  Overall, this local network 

approach has proven quite practical, and questionnaire modules have been adapted for 

studies in sociology (Granovetter 1973), demography (Massey 1990) and epidemiology 

(Laumann et al. 1989, Morris and Dean 1994, Buve et al. 2001). 

 To date, the statistical models for complete and local network data have been 

developed independently.  Both, however, are generalized linear models based on the 

exponential family.  For saturated models, the two methods are equivalent, and their 

fitted probabilities can be directly related via Bayes’ rule.  For non-saturated models they 

are not perfectly equivalent, but their fitted values when linked via Bayes’ rule are likely 

to be highly similar. The conditions under which equivalence holds, and the reasons for 

similarity when it does not, help to illuminate the links between the two models, to bridge 

the gap between local and complete network data, and to make the first steps towards a 

single coherent statistical framework for modeling networks. 

 In this paper, we explicate the relationships between random graph models and 

loglinear mixing models for network data.  We then illustrate these using data on a 
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network of school friendships from the National Longitudinal Study of Adolescent 

Health (Add Health). 

2. TERMINOLOGY AND NOTATION 

 Social network data include a set of social entities, generally referred to as actors 

or nodes, and a set of relational measurements, also known as ties, links, arcs, lines, 

edges or partnerships, that exist between pairs of those actors on some social relation.  In 

the example we will be using below, actors are individual people and the relation is 

friendship.  The number of actors in the network will be denoted by n; the fixed set of 

network actors will be represented by N, where N = {1,2,3,…, n}.  One generally 

measures some attribute variables on the actors such as sex, ethnic origin, religious 

affiliation, geographic location, or age.  For simplicity, we shall assume for this paper 

that actors are coded according to a single nominal attribute that can take on K values; the 

results are easily generalizable to multiple and ordinal attributes.   We define the sets Ck 

for k = 1 to K, whose elements are all those nodes possessing the kth value of the 

attribute.  (The ordering of attribute values is arbitrary for nominal attributes).  The 

number of actors with attribute k is denoted nk, so that n n
1

K

k
k=

= ∑ . 

 Pairs of actors, whether or not they share a relational tie , are referred to as dyads.  

The value of the tie between two actors is denoted by X; for specific actors i,j the random 

variable is denoted Xij. In the current discussion, we will assume that the tie relation is 

dichotomous, such that Xij = 1 if actors i and j share a tie and Xij = 0 if they do not.  We 

define T as the total number of ties in the network. 

 Relations may be either directed or nondirected.  The relation is nondirected if a 

tie is either present or absent between each actor pair (Xij = Xji for all i,j pairs). A directed 
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relation consists of measurements where the orientation of the ties between actors is 

meaningful.  In this case Xij need not equal Xji.  An example of a nondirected relationship 

would be “has sex with”; a directed relationship would be “sells drugs to”.  With local 

network data there is often a directionality implied by the study design (separate from the 

relationship itself), such that respondents may be viewed as “sending” the relationship 

and their nominated partners as “receiving”.  We will use an example based on directed 

data here, but the approach is easily extended to undirected relationships. 

 A social network can be represented as a graph, G, consisting of a set of nodes 

joined by lines or arcs.  The actors in N are the nodes in the graph.  Relational ties are 

represented graphically by connecting two nodes with a directed line, i→ j, indicating 

that actor i initiates a relationship towards, or chooses, actor j.  Nondirected relationships 

are typically represented by a nondirected line, i—j.  Figure 1 depicts the graph 

representation for a hypothetical nondirected network containing actors identified by sex. 

 The network can also be represented in a two-dimensional array called a 

sociomatrix or adjacency matrix, denoted by X with elements Xij.  If self-relations are 

disallowed, the main diagonal of the sociomatrix is ignored.  For a nondirected relations 

one may assume that Xji =Xij for all (i,j) pairs, or ignore the lower triangle, restricting 

analysis to those Xij for which i < j.  Table 1 provides the sociomatrix corresponding to 

the graph in Figure 1. 

 The sociomatrix can be collapsed into a  mixing matrix or contact matrix.  Rows 

and columns of the sociomatrix are aggregated within attribute classes, resulting in a 

smaller matrix in which cell entries tab indicate the total number of ties in a network 

among actor pairs with attributes a and b: 
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   t Xab ij
i a j b∈ ∈

=∑∑        [1] 

 

 Information about the specific actors involved in the relationships is ignored in 

this matrix.  As with the sociomatrix, the contact matrix is square for a directed 

relationship and triangular for a nondirected one.  Square contact matrices are only used 

for nondirected data when the population can be divided into two classes and all 

partnerships are between classes.   This is called a bipartite graph (e.g. heterosexual 

relationships with male race and female race as the margins).   

 The contact matrix ignores information about the absence of ties.  This 

information can be represented in another matrix, which we will call the “non-contact” 

matrix.  The contact and non-contact matrices form three-dimensional array.   Table 2 

demonstrates this array for the data in Figure 1.  The three dimensions imply three sets of 

marginals.  We follow the standard notation representing the margins with a plus symbol 

in the relevant subscript, and we refer to the two attribute dimensions as A and B and the 

tie/non-tie dimension as Y.  Since we assume a directed graph, attribute dimensions A 

and B refer to the attribute classes of the sender (i) and receiver (j) of the relational tie, 

respectively. Table 3 provides the matrices with margins for clarity.   

 The marginal table tab+ represents the total number of dyads between two actors 

with a given attribute combination.  , In this marginal table A and B are always 

independent since tab+  represents the number of possible a,b dyads and is simply the 
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product of na and nb for all a,b.1  This constraint turns out to have important implications 

both for the patterns of mixing that occur in practice and for the model. 

 

3. MODELING THE GRAPH 

Both of the modeling approaches we compare are probabilistic, treating the Xij ties as 

random variables with realizations xij.  For dichotomous relations, the expected value of 

Xij is thus equal to P(Xij = 1).  A graph in which every potential partnership is independent 

and has an identical expected value is known as a Bernoulli graph.  A graph obeys 

conditional independence if its tie probabilities do not depend on one another given the 

attributes of the nodes; this model is sometimes referred to as an independence model in 

the network literature, dropping the “conditional” since complete independence models 

are rarely of interest.  For directed relationships, dyadic independence (or more correctly, 

conditional dyadic independence) refers to a model in which tie probabilities are 

dependent on the value of the tie between the same two actors in the opposite direction, 

but not on other ties given the actor attributes.  Otherwise, ties are said to be conditionally 

dependent, analogously shortened to dependent in common usage.  We will retain the 

longer but more accurate terms here for clarity.  See Frank (1988) for a full discussion.   

 Nodes i and j are said to be homogeneous if they can be interchanged without 

affecting the probability of the graph. All nodes are homogeneous in a Bernoulli graph, 

while the definition of conditional independence implies that nodes with the same 

                                                 
1 This is true for all bipartite graphs, while for non-bipartite graphs it is only exactly true in the case where 
actors are allowed to share a tie with themselves.  Otherwise, the number of homophilous dyads (those on 
the main diagonal of the contact matrix) in a group with n actors equals n2-n rather than n2. As n gets large, 
however, this difference becomes negligible.  Since modeling as if on-diagonal relationships were allowed 
simplifies the analysis considerably and since its effects in large populations are small, we will do so 
throughout the paper. 
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attributes are homogeneous.  Homogeneity constraints allow for a more parsimonious 

representation, but they represent substantive hypotheses that should be considered part 

of the model.   

 For the remainder of the paper we assume conditional independence.  We will 

also assume that the size of the graph (the number of nodes) and its overall attribute 

composition are fixed, and we will leave these conditions out of our probability 

statements for simplicity.  In the discussion, we will review the ability of different models 

to relax these assumptions. 

3.1 (Conditional) loglinear models for social mixing 

 Loglinear models have long been used to explore mixing matrices incontexts 

where dyadic independence is assumed, and actors are considered homogeneous by 

attributes.  Conditioning on the presence of a tie means that this approachignores 

information about either the non-contact matrix or the size of the population or attribute 

groups as a whole.  We refer to these models as conditional loglinear models (CLLs), to 

distinguish them from the more general approach we discuss below.  In this context each 

tie is a Bernoulli trial whose probability depends only on the attributes of the two actors 

involved.  The cell counts tab1 are the sum of these trials; since we have assumed a fixed 

population and attribute composition, these cell counts have a Poisson (if the total 

number of ties T is not fixed) or multinomial distribution (if it is).   

 Let πab denote the fitted probability of a tie falling in cell (a,b,1) where a,b = 

{1…k} are attribute classes.2  This is the expected count of (a,b,1) divided by the total 

number of ties (t++1).  The saturated CLL model can be expressed as: 

                                                 
2  Since loglinear models for partnership data only examine the contact matrix, they generally possess two 
subscripts.  However, there is a third implied subscript representing tie value y = {0,1}, which is 
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log A B A
ab a b ab

Bπ λ λ λ λ= + + +         [2] 

 

The first term represents a reference level for tie formation, the next two terms are main 

effects for the relative levels of tie formation for each group, and the last is an interaction 

effect for specific attribute pairings.  Interaction effects can be used to saturate the model, 

or they can be constrained to index groups of cells.  A simple one-parameter interaction 

effect is uniform homophily (also known as quasi-independence in the statistical 

literature), which splits the cells into on- and off-diagonal groups.  This parameter can be 

used to estimate the extent to which actors have a differential tendency to choose partners 

from their own attribute class (and to test whether this model fits the data).   Examples of 

other interaction effects include differential homophily factors for each diagonal cell, 

linear or non-parametric distance off the diagonal (e.g., for mixing by age), and single-

cell interaction terms (cf. Morris, 1991 for examples).    

 Identification requires, constraints, and the two most common parameterizations 

are symmetric (or ANOVA) constraints, and first-level constraints.  The latter set the first 

level or category effects for each variable and their interactions equal to zero, thus acting 

as a baseline for interpretation of the parameters associated with the remaining categories 

(Agresti 2002).  The first-level parameterization is used for the examples below.  As with 

all generalized liner models, fitted probabilities and parameter values cannot generally be 

expressed in terms of the observed cell counts; finding values for them generally requires 

iterative solutions.  If we ignore the potential dependence induced by actors contributing 

                                                                                                                                                 
unnecessary in the conditional loglinear framework since it always equals 1. We will follow standard 
notation here, but it may useful to remember the implied presence of this third subscript. 
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multiple partnerships to the data, the model can be fit using a generalized linear model 

with a log link and Poisson errors.  Otherwise, the model can be fit using generalized 

estimating equations (GEE, Liang and Zeger 1986) or non-linear mixed effects models. 

 A shorthand notation is often used to identify specific loglinear models, which 

will prove useful in later sections.  In this notation, a single variable in brackets suggests 

that a full set of terms for the levels of that variable are included in the right-hand side of 

the model formula.  Two or more variables in brackets implies a full set of interaction 

terms for those variables, as well as all lower-order terms.  Thus the model in Equation 

[2] can be abbreviated as [AB], since this signifies a full set of AB interaction terms as 

well as marginal A terms and B terms.  

 For the saturated first-level constraints model the parameters are defined as : 

 

111

11 111

1 1 111

1 111

11 1 1

log( )

log( / )

log( / )

log

A
a a
B

b b

AB ab
ab

a b

λ π

λ π π

λ π π

π πλ
π π

=

=

=

 
=  

 

       [3] 

 

 A model for only marginal effects of A and B in this framework sets the 

AB
abλ terms to 0. The remaining parameter values are adjusted accordingly, and the odds 

ratios for the fitted cell probabilities must satisfy: 

 

1 1 2 2

1 2 2 1

1 1
1 2 1

1 1

1, , , ,a b a b

a b a b

a a b b2

π π
π π

= ∀        [4] 
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This model fits the margins perfectly, but not necessarily the individual cell values. 

 Between the marginal and saturated models lie a range of non-saturated 

interaction models, which involve grouping cells into categories representing layers of a 

given effect.  Non-saturated interactions can be thought of as fitting a generalized margin, 

in the sense that the cells sharing a value for the interaction term will have their sum fit 

by the model, but not individual cells.  The values of these categories Iab  can be placed 

into a design matrix, which helps to clarify their relationship to standard marginal 

models. For example, Table 4 contains the design matrix for a uniform homophily 

parameter with first level constraints in a four-value attribute, along with the design 

matrices for the marginal effects parameters.  Together these would yield the model: 

  

 
,

,
,

,
log

0,

HOM HOM
a bA B HOM

ab a b a b HOM
a b

a b
a b

λ λ
π λ λ λ λ

λ
 = == + + +  = ≠        [5] 

 

The odds-ratios for the fitted cell values must then equal: 

 

( ) 1 1 1 11 1 2 2 1 2 2 11 1 2 2

1 2 2 1

( )1 1
1 2 1 2

1 1

, , , ,a b a b a b a bI I I Ia b a b HOM

a b a b

a a b b
π π

λ
π π

+ + +
= ∀        [6] 

 

For instance, for the four cells defined by a1=2, a2=3, b1=1, b2=2, only 
1 21a bI  is on the 

diagonal, and the odds ratio would equal  
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( ) (1 1 2 2

1 2 2 1

(0 0 1 0) 11 1

1 1

a b a b HOM HOM

a b a b
)π π

λ λ
π π

+ − − −
= =        [7] 

 

Although the statistical literature on loglinear models is extensive, there is comparatively 

little on non-saturated interaction models, despite widespread use of such models in the 

social sciences.   

 All of the above model parameterizations provide estimates for the πab1 values, 

which represent .  Fitted cell counts for the tie matrix (m( , |a b ijP i C j C x∈ ∈ =1) ab1) are 

found by multiplying these probabilities by T.   

 

3.2 Random Graph Models for Social Networks 

 Exponential random graph models reverse the conditioning of CLL, modeling the 

probability that actors share a tie given that they possess certain attributes.  ERGMs use 

both the tie matrix and the non-tie matrix, treating the tie dimension as an outcome 

variable and modeling the log-odds that it is present.  Population size and attribute 

composition are exogenously given in this modelso the total number of dyads of each 

attribute combination are fixed.   

 The ERGM represents the probability function of the random graph G, defined by 

the sociomatrix X, as a linear combination of f network statistics: 

 

{ }1( )  exp (P c θ− ′= =X x z x)        [8] 

 

with 
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{ }
all 

exp ( )
G

c θ ′= ∑ z x        [9] 

 

(Besag 1974).  The vector z(x) representsa set of network configurations.  The θ 

parameters represent the unknown weights of the linear function of network properties.   

The normalizing constant c is needed to ensure a proper probability distribution.  Any 

dyad-based measure from the network may be included in z(x), although typically sums 

or sums of products of Xij are used.3   

 For conditional independence with homogeneity constraints, the model statistics 

are the total number of ties and the number of ties between members of the attribute 

classes: 

 

( ) 1

1 1 1 1
X x exp

K K K K
A A B B AB A

a a b b ab ab
a b a b

P c z z zθ θ θ θ−

= = = =

 
= = + + + 

 
∑ ∑ ∑∑ Bz        [10] 

 

where z = the total number of ties in the network, A
az  = the number of ties initiated by 

actors in attribute class Ca,  = the number of ties received by actors in attribute class 

C

B
bz

b, and AB
abz  = the number of ties initiated by actors in Ca and received by actors in  Cb . 

The θ, A
aθ , B

bθ and AB
abθ  are the coefficient on each term.   

 By definition, the probability of the graph under conditional independence is 

simply the product of the probability of the value of each dyad: 

 

                                                 
3 Examples include nodal degrees, the number of within-group ties (analogous to uniform homophily), or 
the number of transitive triads (Xij = Xjk = Xki = 1).   
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( ) ( )1
,

,... ,K ij ij a b
i j

P C C P X x i C j= = = ∈ C∈∏X x        [11] 

 

 To derive these individual dyad probabilities, we define xij
+, xij

-, and Xij
C 

respectively as the realization of X with xij set equal to 1, the realization of X with xij set 

equal to 0, and the realization of X with Xij coded as missing. The conditional log-odds of 

a tie between actor i and actor j, given the rest of the data, is represented in this 

framework as: 

 

{ }
{ }

exp ( )( 1| )
log log

( 0 | ) exp ( )

C
ijij ij

ijC
ij ij ij

P X
P X

θ
θ

θ

+

−

 ′ =
  ′= =    = ′   

z xX
δ

X z x
       [12] 

 

where z(xij
+) and z(xij

-) represent the vector of network statistics evaluated from xij
+ and 

xij
-, respectively.  The δij terms represent the difference between z(xij

+) and z(xij
-), the 

change in the network statistics when the tie between actor i and actor j is toggled from 1 

to 0.   These conditional logit P(Xij) values can then be converted to  or 

.  

( 1| C
ij ijP X = X )

)( 0 | C
ij ijP X = X

 Under conditional independence, unbiased estimates for the θ’s can be obtained 

from logistic regression with the observed xij values as the outcome variable and the δij's 

as the predictors (Strauss and Ikeda 1990).  This is a generalized linear model with a logit 

link function and binomial errors.   

 When reframed in logit form for an individual tie, Eq. [10] reduces to: 
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( )logit 1 , A B A
ij a b a b abP X i C j C Bθ θ θ θ= ∈ ∈ = + + +         [13] 

 

 Identifiability again requires setting some parameters equal to zero.  This model 

can also be abbreviated as [AB], indicating that the right-hand side of the equation 

contains a similar set of terms as in the saturated CLL model.  The left-hand side of the 

equation is  different, however. 

 A marginal effects model in this context involves setting the AB interaction terms 

to 0: 

 

( ) { }logit 1 , exp A B
ij a b a bP X i C j C θ θ θ= ∈ ∈ = + +        [14] 

 

This is commonly referred to as a model of independence for A and B, but it is not the 

same as the independence model for the CLL. While the logit is now an additive function 

of row and column effects alone, A and B are not independent conditional on Y.  The 

model instead implies: 

 

1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

1 1 0

1 1 0

a b a b a b a b

a b a b a b a b

0

0

π π π π
π π π π

=        [15] 

We will draw out the implications further below. 

 

 The corresponding ERGM uniform homophily model is: 

 

( ) { }logit , exp A B HOM
ij ij a b a b abP X x i C j C θ θ θ θ= ∈ ∈ = + + + .       [16] 

18 



RANDOM GRAPHS AND LOGLINEAR MODELS 

 

As with loglinear models, design matrices can be used to construct and interpret non-

saturated interaction models.  The odds ratios here are:    

( ) 1 1 2 2 1 2 2 11 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

( )1 1 0 0

1 1 0 0

a b a b a b a bI I I Ia b a b a b a b HOM

a b a b a b a b

π π π π
θ

π π π π
+ − −

= ∗        [17] 

 

3.3  Linking ERGMs and conditional loglinear models 

 

 Loglinear models predict ( , | 1)a b ijP i C j C X∈ ∈ =

)

, while ERGMs predict 

.  They are related by Bayes’ formula: ( 1| ,ij a bP X i C j C= ∈ ∈

 

( , | 1) (
( 1| , )

( , )
a b ij ij

ij a b
a b

P i C j C X P X
P X i C j C

P i C j C
1)∈ ∈ =

= ∈ ∈ =
∈ ∈

=

)b

       [18] 

 

The two conditional probabilities are linked by the two marginal probabilities for ties and 

attributes:  P(Xij = 1) is the fraction of all dyads in the network that have a tie, and  

 is the joint distribution of nodal attributes for all dyads.  Bayes’ 

formula thus provides a simple explicit expression for transforming the predicted 

conditional probabilities from one model to that of the other.   

( ,aP i C j C∈ ∈

We will define models as equivalent when this transformation yields identical 

probabilities, and therefore identical fitted cell counts.  Due to the nature of the 

conditioning in each model, it turns out that the only equivalent models by this definition 

are fully saturated models.   
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 Since both CLLs and ERGMs are generalized linear models, it would be natural 

to expect that models in one class would have an explicit representation in the other.  

However, non-saturated models from each class that appear comparable in terms of 

predictors in fact yield different outcomes.  Intuitively, this is because non-saturated 

ERGM use information from the non-tie layer to fit values in the tie layer, and vice versa.  

The CLL ignores the information in the non-tie layer, so in general a non-saturated 

ERGM will result in different fitted cell values than any CLL. 

Unconditional loglinear models (ULLs), which form a bridge between the CLL and the 

ERGM, help to make this clearer.  The ULL does not condition on the presence of a tie, it 

considers all three dimensions (A,B,Y) as predictors with cell counts or probabilities as 

outcome.  The saturated ULL [ABY] is represented as: 

 

log A B Y AB AY BY ABY
aby a b y ab ay by abyπ γ γ γ γ γ γ γ γ= + + + + + + +        [19] 

 

 Its parameters under first-level constraints are4: 

 

( )
( ) ( ) (
( )
( )
( )
( ) ( )

110

10 110 1 0 110 1 111 110

0 110 10 1 0

1 11 110 10 111

1 1 1 110 1 0 111

1 1 111 11 1 1 0 110 10 1 0

log

log / , log / , log /

log /

log /

log /

log / / /

A B Y
a a b b

AB
ab ab a b

AY
a a a

BY
b b b

ABY
ab ab a b ab a b

γ π

γ π π γ π π γ π π

γ π π π π

γ π π π π

γ π π π π

γ π π π π π π π π

=

= = =

=

=

=

 =  

)

                                                

       [20] 

 

 
4 Note that whereas A and B take values {1…k}, Y takes values {0,1}.  Thus the levels in which parameter 
values are set to zero in the first-level constraints model are A=1, B=1, and Y=0. 
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 Marginal effects ERGMs have a corresponding ULL.    The ERGM logistic 

regression model on an (a x b x 2) matrix corresponds to a “no 3-way association” ULL 

that contains the following terms (Agresti 2002, p. 332): 

 

 a full set of AB interaction terms. 

 a Y marginal term 

 every term in the logit model 

 every term in the logit model crossed by Y   

 

The AB interaction terms in the ULL ensure that the cells in the tab+ marginal 

matrix are fit exactly.  These establish the population size, marginal attribute 

composition, and the number of dyads (not ties) among attribute groups.  Any equivalent 

ULL must have this [AB] term in the model, because population size and composition are 

exogenous to the ERGM.  

 Marginal effects CLLs are equivalent to the “conditional independence” ULL, 

which contain the following terms: 

 

 a Y marginal term 

 every term in the CLL model 

 every term in the CLL model crossed by Y   

 

Here the Y term sets the number of ties, and each of the terms crossed by Y allows the 

CLL terms to be represented in the ULL tie layer independently of the non-tie layer.   
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Table 5 lays out the set of equivalencies among ERGMs, ULLs, and CLLs.  Note 

that non-saturated ERGMs have no corresponding CLL.  We can formalize the earlier 

intuition now by arguing deductively from the two sets of equivalence rules.5   The 

equivalence rules for non-saturated interaction models follow in a straightforward way 

from the marginal effects rules, and these are shown in the lower part of  the table.  We 

use the symbol UAB as a general symbol representing any set of non-saturated interaction 

terms between a and b.   

 Table 5 makes explicit how the ERGM and CLL marginal effects models differ.  

While this is the model that we commonly think of as implying that A and B are 

independent, independence clearly means different things in the two models.  For CLL, it 

means that A and B are independent conditional on Y.   For ERGM independence means 

"no 3-way association": all three variables are pairwise dependent, but each pair is 

conditionally independent given the third.  This does not mean that A and B are 

independent in either layer of Y; instead, the pattern of dependence is the same in each 

layer.  The difference is also evident when comparing the fitting constraints, Eq. [4] for 

the CLL, and Eq. [15] for the ERGM. 

  The model of “no 3-way association” is one of the most difficult to interpret in 

practice, yet it corresponds to the basic marginal effects model in the ERGM.  There is no 

simpler definition in the ERGM context because there is an implicit constraint that A and 

B are independent in the marginal matrix of all dyads, mab+.  Since the tie and non-tie 

matrices must sum to this marginal matrix, the cell values in one layer determine the 

other when the totals are fixed.  The two layers can only exhibit conditional 

                                                 
5 Imagine that there exists some ERGM with an equivalent CLL.  The ULL that is equivalent to this ERGM 
must contain an [AB] interaction term.  If the ULL contains [AB] then its CLL equivalent must also contain 
[AB].  If the CLL contains [AB] then the ULL must contain [ABY], which means it is fully saturated.   
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independence of A and B given Y under a narrow range of conditions: if the attribute 

groups are homogeneous with respect to tie formation (which degenerates into the 

Bernoulli model) or if differences in tie formation are exactly counterbalanced by 

differences in group sizes.   In essence, the additional implicit constraint mab+ creates an 

inverse form of Simpson's paradox; two attributes are independent in the marginal table, 

but when stratified by a third variable (here, tie value), they are not independent in each 

stratified table.      

 In practice, however, the fitted values from the two marginal effects models are 

likely to be similar.  Social networks for populations of reasonable size are generally 

quite sparse, because the number of ties in a population generally scales roughly with the 

population size, while the number of dyads varies with the square of population size.  If 

almost all dyads have Y = 0, then we can assume πab0  ≅ πab+ for all a,b.  Thus  

 

0 110 11

10 1 0 1 1

1ab ab

a b a b

π π π π
π π π π

+ +

+ +

≈ ≈ .       [21] 

 

This means the right hand side of Eq. [15] is approximately equal to 1 for sparse 

matrices, reducing it to Eq. [4], and implying that the two models will yield 

approximately equal results.  Bayes’ formula can be used to transform the results from 

one model to the other to determine the magnitude of the difference.  In our experience, 

sparse matrices of at least a few hundred people yield marginal models in which cell 

counts differ by at most a tenth of a partnership.  For non-sparse matrices from small 

settings such as an office or classroom, the differences will be small as long as the sizes 

and activity levels of the different attribute classes are roughly equal. 
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3.4 Parameter equivalencies 

 

 By combining Eqs. [3] and [20], the parameters for the saturated CLL can be 

represented as sums of the parameters from its corresponding ULL:6 
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1
11 1 1 10 1 010 1 0

log AB ABab ab ab
ab ab

a b a ba b

π π π π π Yγ γ
π π π ππ π

      
+ =      

      
+

       [22] 

 

 We can also reformulate the saturated ULL into a logit model that models the log 

odds of a tie: 

 

1 1 1log log log Y AY BY ABab1
ab1 ab0 a b ab

ab0
1
Yπ π π γ γ γ γ

π
= − = + + +        [23] 

 

Each ERGM parameter in the fully saturated model is equivalent to the parameter on that 

term crossed by Y in the ULL.  These relationships between parameter values also hold 

for non-saturated models.   

 

                                                 
6  If we had formulated the ULL parameters in reverse so that Y=1 was the reference category 
instead of Y=0, then the CLL parameters would have been identical to a subset of the ULL parameters. 

24 



RANDOM GRAPHS AND LOGLINEAR MODELS 

4. EXAMPLE: THE ADD HEALTH STUDY 

 We use the friendship nomination data from the first wave of the National 

Longitudinal Study of Adolescent Health (Add Health) to demonstrate the results above.  

Add Health is a nationally representative study of students in grades 7 through 12, and 

the first wave was conducted in 1994-1995.  The study was school-based, and students 

were provided with a roster of all students in the school and asked to select up to five 

close male friends and five close female friends.  Complete details of this and subsequent 

waves of the study can be found in Resnick et al. (1997) and Udry and Bearman (1998) 

and at http://www.cpc.unc.edu/projects/addhealth.   

 We will use friendship data from one school comprising 71 students.  The ties are 

directional since it is possible person A could name B as a friend without B nominating 

A.  The limit on nominations means that the data are not complete, but we will assume 

for convenience that a lack of nomination in these data means that there is no friendship.   

 Table 6 shows the contact and non-contact matrices for the example.  We begin 

by fitting a CLL and an ERGM with main effects only and the ULL that corresponds to 

each.  A quick glance at the table makes it clear that there is a strong preference for 

students of all grades to nominate friends in their own grade; we thus also run the CLL 

and ERGM models for main effects with uniform homophily.  In each case, a first-level 

constraint was used, and both were fit using the glm macro in R (Ihaka and Gentleman 

1996).   

 The parameter estimates for the marginal effects models are shown in Table 7.  

These allow for a comparison of the CLL and ERGM to their respective ULL 

parameterizations.  In the case of the ERGM, the ULL parameter values in the first 
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column of Table 7 are those that fit the tab+  cells exactly; there are no corresponding 

parameters on the ERGM side because these values are conditioned on.  Note that all 25 

(=[a-1]*[b-1]) of the AB interaction terms in the ULL list are very close to 0; they are 

modeling the log of the odds ratios in the non-tie matrix, and those odds ratios are all 

very close to 1 for the reason described in the previous section (see Eq. [24]).  The ULL 

parameters in the fourth column (those that represent the patterns in the Y = 1 layer) have 

values equal to the ERGM parameters. 

 For the CLL marginal effects model, the corresponding ULL model does not have 

any [AB] interaction parameters.  There are exactly twice as many parameters in the ULL 

parameterization as in the CLL model, since the ULL model is fitting both layers; the 

first column of the ULL values fits the appropriate independence model in the non-tie 

layer, while the second column then fits independence in the tie layer.  With the first-

level parameterization, each CLL parameter equals the sum of the two parameters in the 

ULL in the same row in Table 7. 

 Table 8 compares the parameter values for the marginal effects and the uniform 

homophily models.  In both the ERGM and CLL framework the reduction in deviance 

makes it clear that the addition of a single parameter for homophily greatly increases the 

fit of the model. 

 Table 9 demonstrates the use of Bayes’ formula to convert the parameter values 

between the two models.  The first column shows the probabilities given by the marginal 

effects ERGM model, the second shows those values transformed by Bayes’ formula into 

the form modeled by the CLL.  These are almost identical to the CLL estimates, despite 

the fact that the models are not perfectly equivalent.  This can also bee seen in Table 10, 

26 



RANDOM GRAPHS AND LOGLINEAR MODELS 

which provides the full set of fitted cell values for the tie layer of each model.  (We do 

not include the fits for the non-tie layer since the CLL does not generate any).  For the 

marginal effects model, the two approaches yielded nearly identical fitted cell values; 

they are only slightly more different for the uniform homophily model.  Even for 

relatively small, dense social network, then, the practical differences between the two 

modeling frameworks are not very large. 

5. DISCUSSION 

 Conditional loglinear models assume that actors follow particular rules when 

choosing their partners.  ERGMs, under conditional dyadic independence, assume that 

people follow rules both in choosing who to be their partners and who not to be their 

partners.  It is not immediately clear which of these is a better model of social behavior, 

and the answer is probably application specific.  For dealing with large populations in 

which people can only form ties with a small fraction of those they encounter, it seems 

reasonable to assume that the non-ties are not explicitly chosen.  In small settings such as 

school or offices or anthropological populations, the patterns of non-ties (don’t 

collaborate, don’t get along, aren’t allowed to marry) may be of as much interest as the 

ties.  While the CLL framework disregards them completely, the ERGM framework 

considers them, but assumes that the non-tie patterns are simply equal to the tie patterns, 

which may not be any closer to the truth.  The similarity of the fitted values in practice 

means that the substantive differences may be small.  However, it is still important that 

those using these modeling frameworks are aware of what they are fitting both when 

selecting models to estimate and in interpreting the results.   
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 For substantive purposes, the more important differences between the two 

approaches concern what assumptions they can relax easily:  the assumptions of fixed 

attribute composition, and of dyadic independence.  We have assumed both throughout 

the paper.  The CLLs can better handle the former, and the ERGM the latter.  Morris 

(1991) reviews how conditional loglinear models can be used to model populations in 

which the relative sizes of the attribute groups are changing over time.  This requires data 

or assumptions about how actors behave as their preferred partners become more or less 

available over time, but is easily implemented.  ERGMs, as currently paramterized, have 

been less successful in modeling such changing populations, although in theory this 

should be possible.  This remains an open avenue of research. 

 Where random graph models do currently extend the power of loglinear models is 

in their ability to model statistical dependence among ties.  For many phenomena of 

interest to the social scientist, it is reasonable to believe that there are complex 

interdependencies among actors and the relationships they do or do not share.  Although 

most work thus far has focused on counts of microstructures, or locally connected subsets 

of the graph, ERGMs can incorporate many types of interdependence, including such 

larger network properties as connectivity, centrality and distance.  Combined with 

Markov chain Monte Carlo simulation algorithms, ERGMs place questions of inference 

for conditional dependence on a firm statistical footing, and allow us to conduct tests of 

dyadic dependence to guide development of practical data collection.   

 Note that the distinctions in conditioning that we have discussed are similar to 

those already observed in a series of papers by Robins, Pattison, and Elliott (Robins et al. 

2001, 2002). These papers distinguish between social network models that examine 
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social influence and social selection processes.   Social influence processes assume that 

network structure can influence, or affect, individual characteristics; actors are influenced 

by others with whom they are relationally tied.  Thus, in its simplest form, the social 

influence model proposed by Robins and colleagues (2002), investigates the tendency for 

a particular attribute composition among pairs of actors, given that they are relationally 

tied.  This is essentially the assumption specified in CLL.  A social selection process, 

however, assumes that individuals select partners based on their own attributes as well as 

the attributes or characteristics of potential partners.  This is similar to assumptions 

underlying the conditional dyadic independence ERGMs. 

 One of the reasons for the existence of the differences between CLLs and ERGMs 

is the assumption made by ERGMs that the structure of the entire network is known – 

that we have taken measurements on all individuals within a bounded group.  Rarely in 

the applied social network literature will relations be measured on pairs of actors in a 

well-defined bounded group; the AddHealth project is one example.  A more likely 

approach to collecting network data is to use local network sampling or some form of 

partial networks, usually based on snowball sampling.  The CLL framework effectively 

hides the sampling issue by conditioning on observed ties, thereby confounding non-ties 

with non-sampled ties.  The ERGM framework maintains this distinction.   

In the case of complete network data, where population size is known and all ties 

are recorded, the non-contact matrix is directly calculable from the tie data, and the 3-

dimensional ULL can be thought of as providing a bridge between the two cases.  If we 

have tie data that are a sample, but we do not know how they were sampled, we will have 

little means for determining the non-contact matrix and developing this bridge.  If, 
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however, we know the sampling scheme used to generate our data and we have 

information on the census sizes of the different attribute groups, we can disaggregate the 

non-ties and non-sampled ties in the CLL framework, thus estimating the complete 3-

dimensinal tie/non-tie matrix.  We will then also be able to walk across from one 

modeling framework to the other.  Developing the literature on the methods for 

conducting this imputation process will be a crucial next step in the field.   

 Another approach may be to integrate the conditioning on ties assumed in the 

CLL models directly into the ERGMs.  This can be done by using the sampling scheme 

or data collection queries to define the social neighborhoods of network actors.  Pattison 

and Robbins (in press) show that applying neighborhood constraints on ERGMs may 

provide a more realistic representation of social behavior and the patterns of social 

relations.  It can be shown that the conditional dyadic independence ERGMs, which 

apply neighborhood constraints defined by the sexual neighborhoods of respondents (e.g. 

their alters or sexual partners), reduces to the CLLs commonly used in the literature for 

ego-centered networks.  Using the sampling process to define social neighborhoods, or 

setting structures, may be a fruitful avenue of future investigation. 
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TABLE 1 
 
 

 M1 M2 M3 M4 F1 F2 F3 F4 F5 F6
M1 - 0 0 1 0 1 0 0 0 0
M2 1 - 1 0 0 0 0 0 0 0
M3 1 0 - 0 0 0 0 0 0 0
M4 1 1 0 - 0 0 0 0 0 0
F1 1 0 0 0 - 0 1 0 0 0
F2 0 0 0 0 0 - 0 1 0 0
F3 0 0 0 0 0 0 - 0 0 0
F4 0 0 0 0 0 1 0 - 1 0
F5 0 0 0 0 1 1 0 1 - 0
F6 0 0 0 0 0 0 0 0 1 -
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TABLE 2 
 
 
Y=1 (tie) 
 

 
 
 
 

 M F 
M 6 1 
F 1 8 

 
 
Y=0 (no tie) 
 

 
 
 
 

 M F 
M 6 23 
F 23 22 
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TABLE 3 
 
 
 
Y= 1 

  B=1 B=2 B=3 B=4  
A=1 t111 t121 t131 t141 t1+1 
A=2 t211 t221 t231 t241 t2+1 
A=3 t311 t321 t331 t341 t3+1 
A=4 t411 t421 t431 t441 t4+1 

 t+11 t+21 t+31 t+41 t++1

 
 
 
 
 
 

 
Y= 0 

  B=1 B=2 B=3 B=4  
A=1 t110 t120 t130 t140 t1+0 
A=2 t210 t220 t230 t240 t2+0 
A=3 t310 t320 t330 t340 t3+0 
A=4 t410 t420 t430 t440 t4+0 

 t+10 t+20 t+30 t+40 t++0

 
 
 
 
 
 

 
 
Y= + 

  B=1 B=2 B=3 B=4  
A=1 t11+ t12+ t13+ t14+ t1++
A=2 t21+ t22+ t23+ t24+ t2++
A=3 t31+ t32+ t33+ t34+ t3++
A=4 t41+ t42+ t43+ t44+ t4++

 t+1+ t+2+ t+3+ t+4+ t+++
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TABLE 4:  Design matrices, 4x4 table 
 
 
Design matrix for uniform homophily 
 
 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 
 
  
 

 

 
 
Implicit design matrices for marginal effects with first-level constraints 
 
     A=2      A=3      A=4 
 

0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 0

 
 
 
 
  
 

    
0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0

 
 
 
 
  
 

0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

 
 
 
 
  
 

 
     B=2      B=3      B=4 
 

0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0

 
 
 
 
  
 

   
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

 
 
 
 
  
 

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
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TABLE 5:  Corresponding models 
 
 

Name Cond. loglinear model Uncond. loglinear model ERGM 
 cell count in layer Y=1 is a 

function of: 
cell count is a function of: logit(Y) is a function of: 

Saturated    [AB] [ABY] [AB]

Bernoulli graph  [AB][Y] [-] 

Independence (ERGM) (i.e. no 3-way 
interaction) 

  [AB] [AY] [BY] [A][B]

Independence (CLL) (i.e. independence 
of A and B conditional on Y) 

[A][B]  [AY][BY]

Non-saturated interaction (ERGM)  [AB] [AY] [BY] [UAB Y] [A][B] and [UAB] 

Non-saturated interaction (CLL) [A][B] and [UAB] [AY] [BY] [UAB Y]

  

 

 

  

 
 
 Notation follows Fienberg (1977) and many others.  [X] refers to terms for each value of variable X.  [XY] refers to a full set 
of interaction terms for X by Y, as well as terms for each level of X alone and of Y alone.  UXY  ("U" for "unsaturated") indicates that 
some but not all of the set of interaction terms are included in the model (e.g. uniform homophily).  Any interaction term implies that 
all lower order terms are included as well.  The model pairs enclosed in each square make clear the lack of equivalence between 
ERGMs and CLLs.  In each case, the ULL that corresponds to the ERGM contains an [AB] interaction term that is missing from the 
ULL corresponding to the CLL.  Although all of the other terms are identical between the two models, the presence or absence of the 
[AB] terms change the values and interpretations of the others.
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TABLE 6:  Add Health data 
 
 
a) Student body composition 
 
Grade 7 15
Grade 8 13
Grade 9 16
Grade 10 10
Grade 11 13
Grade 12 4
 71
 
 
b) Reported friendships and imputed non-friendships by grade of nominator and nominee 
 
 
Friendships 
 

Grade of nominee 
7 8 9 10 11 12

7 52 5 1 1 0 0 59
8 8 33 9 0 1 1 52

Grade 9 0 10 70 1 4 1 86
Of 10 0 0 3 30 10 0 43

Nominator 11 1 0 2 7 43 4 57
12 0 0 1 0 2 5 8

61 48 86 39 60 11 305
 
 
Non-friendships 
 

Grade of nominee 
7 8 9 10 11 12

7 173 190 239 149 195 60 1006
8 187 136 199 130 168 51 871

Grade 9 240 198 186 159 204 63 1050
Of 10 150 130 157 70 120 40 667

Nominator 11 194 169 206 123 126 48 866
12 60 52 63 40 50 11 276

1004 875 1050 671 863 273 4736
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Total Dyads7 
 

Grade of nominee 
7 8 9 10 11 12

7 225 195 240 150 195 60 1065
8 195 169 208 130 169 52 923

Grade 9 240 208 256 160 208 64 1136
Of 10 150 130 160 100 130 40 710

Nominator 11 195 169 208 130 169 52 923
12 60 52 64 40 52 16 284

1065 923 1136 710 923 284 5041

                                                 
7 Note that we are again including on-diagonal relationships for the reasons described in footnote 1. 
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TABLE 7:  Parameter values for Add Health, marginal effects models 

 

Marginal effects model, ERGM 

 
ULL  ERGM

  

terms without Y terms  with Y
γ  5.362 8, 8

AB
a bγ = = 0.000 10, 11

AB
a bγ = = -0.001 1

Y
yγ = -2.895 θ -2.895

8
A
aγ =  -0.144 8, 9

AB
a bγ = = 0.000 10, 12

AB
a bγ = = 0.002 8, 1

AY
a yγ = = 0.018 8

A
aθ = 0.018

9
A
aγ =  0.044 8, 10

AB
a bγ = = 0.000 11, 8

AB
a bγ = = 0.001 9, 1

AY
a yγ = = 0.335 9

A
aθ = 0.335

10
A
aγ =  -0.411 8, 11

AB
a bγ = = 0.000 11, 9

AB
a bγ = = -0.002 10, 1

AY
a yγ = = 0.095 10

A
aθ = 0.095

11
A
aγ =  -0.150 8, 12

AB
a bγ = = 0.000 11, 10

AB
a bγ = = 0.000 11, 1

AY
a yγ = = 0.116 11

A
aθ = 0.116

12
A
aγ =  -1.295 9, 8

AB
a bγ = = 0.002 11, 11

AB
a bγ = = -0.001 12, 1

AY
a yγ = = -0.705 12

A
aθ = -0.706

8
B
bγ =  -0.138 9, 9

AB
a bγ = = -0.007 11, 12

AB
a bγ = = 0.002 8, 1

BY
b yγ = = -0.103 8

B
bθ = -0.102

9
B
bγ =  0.046 9, 10

AB
a bγ = = 0.001 12, 8

AB
a bγ = = -0.003 9, 1

BY
b yγ = = 0.299 9

B
bθ = 0.299

10
B
bγ =  -0.403 9, 11

AB
a bγ = = -0.003 12, 9

AB
a bγ = = 0.009 10, 1

BY
b yγ = = -0.045 10

B
bθ = -0.044

11
B
bγ =  -0.151 9, 12

AB
a bγ = = 0.007 12, 10

AB
a bγ = = -0.001 11, 1

BY
b yγ = = 0.135 11

B
bθ = 0.135

12
B
bγ =  -1.304 10, 8

AB
a bγ = = 0.000 12, 11

AB
a bγ = = 0.004 12, 1

BY
b yγ = = -0.412 12

B
bθ = -0.411

  10, 9
AB
a bγ = = -0.002 12, 12

AB
a bγ = = -0.009

  10, 10
AB
a bγ = = 0.000
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Marginal effects model, CLL 
 
 
ULL     CLL  

  
γ 5.363 1

Y
yγ = -2.894 λ  2.468

8
A
aγ = -0.144 8, 1

AY
a yγ = = 0.018 8

A
aλ =  -0.126

9
A
aγ = 0.043 9, 1

AY
a yγ = = 0.334 9

A
aλ =  0.377

10
A
aγ = -0.411 10, 1

AY
a yγ = = 0.095 10

A
aλ =  -0.316

11
A
aγ = -0.150 11, 1a yγ = =

AY
0.115 11

A
aλ =  -0.034

12
A
aγ = -1.293 12, 1a yγ = =

AY
-0.704 12

A
aλ =  -1.998

8
B
bγ = -0.138 8, 1b yγ = =

BY
-0.102 8

B
bλ =  -0.240

9
B
bγ = 0.045 9, 1b yγ = =

BY
0.299 9

B
bλ =  0.343

10b
Bγ = -0.403 10, 1b yγ = =

BY
-0.044 10b

Bλ =  -0.447

11b
Bγ = -0.151 11, 1b yγ = =

BY
0.135 11b

Bλ =  -0.017

12
B
bγ = -1.302 12, 1b yγ = =

BY
-0.411 12

B
bλ =  -1.713

 
 
 
The ERGM parameter values match the Y-interaction parameters (2nd column) of the 
corresponding ULL.  The CLL parameter values each equal the sum of two parameters 
from the corresponding ULL; these are arranged in the same row. 
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TABLE 8: AddHealth parameter values, marginal effects vs. uniform homophily 
 
 
ERGM 
 

Marginal
effects

Uniform
homophily 

 
θ -2.895 θ -4.2943

8
A

aθ = 0.018 8
A

aθ = 0.2436
9

A
aθ = 0.335 9

A
aθ = 0.2447

10
A

aθ = 0.095 10
A

aθ = 0.4415
11

A
aθ = 0.116 11

A
aθ = 0.1332

12
A

aθ = -0.706 12
A

aθ = -0.0439
8

B
bθ = -0.102 8

B
bθ = -0.1554

9
B

bθ = 0.299 9
B

bθ = 0.1205
10

B
bθ = -0.044 10

B
bθ = 0.0193

11
B
bθ = 0.135 11

B
bθ = 0.1925

12
B

bθ = -0.411 12
B

bθ = 0.4107
HOM
abθ 2.9537

 
 
 
Null deviance: 2302.2 

Residual deviance, marginal effects: 2281.5 

Residual deviance, marg. eff. and uniform homophily: 1766.7 
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CLL 
 

Marginal
effects

Uniform 
homophily 

λ 2.468 λ 1.1593
8

A
aλ = -0.126 8

A
aλ = 0.0844

9
A

aλ = 0.377 9
A

aλ = 0.2668
10

A
aλ = -0.316 10

A
aλ = -0.0174

11
A

aλ = -0.034 11
A

aλ = -0.0462
12

A
aλ = -1.998 12

A
aλ = -1.4021

8
B

bλ = -0.240 8
B

bλ = -0.3002
9

B
bλ = 0.343 9

B
bλ = 0.1474

10
B

bλ = -0.447 10
B

bλ = -0.4350
11

B
bλ = -0.017 11

B
bλ = 0.0160

12
B

bλ = -1.713 12
B

bλ = -0.9490
HOM
abλ 2.6782

 

 
Null deviance: 719.3  

Residual deviance, marginal effects: 567.1 

Residual deviance, marg. eff. and uniform homophily: 98.4 
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TABLE 9:  Bayes’ formula for the marginal effects model, Add Health Data 

 
   ERGM CLL 

a b ( 1ijP X = | ( 1ijP X 
, )a bi C j C∈ ∈  

)= ( ,aP i C j∈ ∈

)bC
( ,aP i C j∈ ∈

| 1b ijC X )=
( ,aP i C j∈ ∈ 

| 1b ijC X = )  

7 7 0.0524 0.0605 0.0446 0.0387 0.0387 
7 8 0.0476 0.0605 0.0387 0.0304 0.0304 
7 9 0.0694 0.0605 0.0476 0.0546 0.0545 
7 10 0.0502 0.0605 0.0298 0.0247 0.0247 
7 11 0.0595 0.0605 0.0387 0.0381 0.0381 
7 12 0.0354 0.0605 0.0119 0.0070 0.0070 
8 7 0.0533 0.0605 0.0387 0.0341 0.0341 
8 8 0.0484 0.0605 0.0335 0.0268 0.0268 
8 9 0.0706 0.0605 0.0413 0.0481 0.0481 
8 10 0.0511 0.0605 0.0258 0.0218 0.0218 
8 11 0.0605 0.0605 0.0335 0.0335 0.0335 
8 12 0.0360 0.0605 0.0103 0.0061 0.0061 
9 7 0.0717 0.0605 0.0476 0.0565 0.0564 
9 8 0.0652 0.0605 0.0413 0.0445 0.0444 
9 9 0.0944 0.0605 0.0508 0.0793 0.0795 
9 10 0.0688 0.0605 0.0317 0.0361 0.0361 
9 11 0.0813 0.0605 0.0413 0.0554 0.0555 
9 12 0.0487 0.0605 0.0127 0.0102 0.0102 

10 7 0.0573 0.0605 0.0298 0.0282 0.0282 
10 8 0.0520 0.0605 0.0258 0.0222 0.0222 
10 9 0.0758 0.0605 0.0317 0.0398 0.0398 
10 10 0.0550 0.0605 0.0198 0.0180 0.0180 
10 11 0.0651 0.0605 0.0258 0.0277 0.0277 
10 12 0.0387 0.0605 0.0079 0.0051 0.0051 
11 7 0.0585 0.0605 0.0387 0.0374 0.0374 
11 8 0.0531 0.0605 0.0335 0.0294 0.0294 
11 9 0.0773 0.0605 0.0413 0.0527 0.0527 
11 10 0.0561 0.0605 0.0258 0.0239 0.0239 
11 11 0.0664 0.0605 0.0335 0.0368 0.0368 
11 12 0.0395 0.0605 0.0103 0.0067 0.0067 
12 7 0.0266 0.0605 0.0119 0.0052 0.0052 
12 8 0.0241 0.0605 0.0103 0.0041 0.0041 
12 9 0.0355 0.0605 0.0127 0.0075 0.0074 
12 10 0.0255 0.0605 0.0079 0.0033 0.0034 
12 11 0.0303 0.0605 0.0103 0.0052 0.0052 
12 12 0.0178 0.0605 0.0032 0.0009 0.0009 
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TABLE 10:  Fitted cell counts, Add Health Data 

 
Marginal effects model 

 
ERGM 
 

Grade of nominee 
7 8 9 10 11 12

7 11.79 9.27 16.66 7.54 11.61 2.12 59.00
8 10.39 8.17 14.68 6.64 10.23 1.87 52.00

Grade 9 17.22 13.57 24.17 11.02 16.91 3.12 86.00
of 10 8.60 6.76 12.13 5.50 8.46 1.55 43.00

nominator 11 11.40 8.97 16.07 7.29 11.21 2.06 57.00
12 1.60 1.25 2.27 1.02 1.58 0.28 8.00

61.00 48.00 86.00 39.00 60.00 11.00 305.00
 

 
CLL 
 

Grade of nominee 
7 8 9 10 11 12

7 11.80 9.29 16.64 7.54 11.61 2.13 59.00
8 10.40 8.18 14.66 6.65 10.23 1.88 52.00

Grade 9 17.20 13.53 24.25 11.00 16.92 3.10 86.00
Of 10 8.60 6.77 12.12 5.50 8.46 1.55 43.00

Nominator 11 11.40 8.97 16.07 7.29 11.21 2.06 57.00
12 1.60 1.26 2.26 1.02 1.57 0.29 8.00

61.00 48.00 86.00 39.00 60.00 11.00 305.00
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Marginal effects and uniform homophily 
 
 
ERGM 

Grade of nominee 
7 8 9 10 11 12

7 46.67 2.25 3.64 2.06 3.17 1.21 59.00
8 3.34 37.57 4.01 2.27 3.49 1.33 52.00

Grade 9 4.11 3.06 70.09 2.79 4.30 1.64 86.00
of 10 3.12 2.32 3.74 29.32 3.26 1.24 43.00

nominator 11 2.99 2.23 3.59 2.03 44.96 1.19 57.00
12 0.77 0.58 0.93 0.53 0.81 4.39 8.00

61.00 48.00 86.00 39.00 60.00 11.00 305.00
 
 

CLL 
 

Grade of nominee 
7 8 9 10 11 12

7 46.41 2.36 3.69 2.06 3.24 1.23 59.00
8 3.47 37.40 4.02 2.24 3.52 1.34 52.00

Grade 9 4.16 3.08 70.22 2.69 4.23 1.61 86.00
of 10 3.13 2.32 3.63 29.52 3.18 1.21 43.00

nominator 11 3.04 2.25 3.53 1.97 45.03 1.18 57.00
12 0.78 0.58 0.91 0.51 0.80 4.42 8.00

61.00 48.00 86.00 39.00 60.00 11.00 305.00
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