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Abstract

Recent work has focused attention on statistical inference for the population distribution of
the number of sexual partners based on survey data.
The characteristics of these distributions are of interest as components of mathematical

models for the transmission dynamics of sexually-transmitted diseases (STDs). Such information
can be used both to calibrate theoretical models, to make predictions for real populations, and
as a tool for guiding public health policy.
Our previous work on this subject has developed likelihood-based statistical methods for

inference that allow for low-dimensional, semi-parametric models. Inference has been based on
several proposed stochastic process models for the formation of sexual partnership networks. We
have also developed model selection criteria to choose between competing models, and assessed
the fit of different models to three populations: Uganda, Sweden, and the USA. Throughout this
work, we have emphasized the correct assessment of the uncertainty of the estimates based on
the data analyzed. We have also widened the question of interest to the limitations of inferences
from such data, and the utility of degree-based epidemiological models more generally.
In this paper we address further statistical issues that are important in this area, and a

number of confusions that have arisen in interpreting our work. In particular, we consider the
use of cumulative lifetime partner distributions, heaping and other issues raised by Liljeros et
al. in a recent working paper.



1 Introduction

In two recent papers (Jones and Handcock, 2003a,b), we have been critical of the statistical
methodology used to asses the scaling behavior of sexual partnership distributions. Because
of the important public health implications of research into the properties of sexual contact
networks, we argue that tools used to evaluate these properties must be of the highest scientific
quality. Two points in particular are fundamental to rigorous science which underlies policy-
making:

1. An accurate accounting of uncertainty, since a large segment of sound public policy (in-
cluding public health policy) is the management of risk under uncertainty (Tanur et al.,
1989; Berger, 1986; Tuljapurkar et al., 2000).

2. The transparent application of methodology, including precise definitions of key terms, and
the specification of statistical and mathematical tools and the assumptions which underlie
them.

Liljeros et al. (2001, 907) write that their “. . .most important finding is the scale-free nature
of the connectivity of an objectively-defined non-professional social network.” Though the term
“scale-free” is never defined, the public health implications of this finding are articulated in the
following paragraph:

. . . the measures adopted to contain or stop the propagation of diseases in a network
need to be radically different for scale-free networks. Single-scale networks are not
susceptible to attack at even the most connected nodes, whereas scale-free networks
are resilient to random failure but are highly susceptible to destruction of the most
connected nodes (Liljeros et al., 2001, 907).

By “destruction of most connected nodes,” we assume they mean treating (or sequestering?)
highly promiscuous people.
Targeted interventions, of course, are nothing new in public health, as we note in Jones and

Handcock (2003a), citing work targeting populations such as commercial sex workers (Ford and
Koetsawang, 1999), clients of sex workers (Morris, 2001), army recruits (Nelson et al., 2002),
persons with concurrent partners (Morris et al., 1997), or injection drug users (Neaigus, 1999),
which have a proven record in reducing disease incidence.
In addition to targeted interventions, standard practice in infectious disease epidemiology

attempts to eradicate infectious agents by vaccinating (or treating) a critical fraction of the
population (see e.g., Anderson and May, 1991).
One clear implication of the “radically different” interventions required by scale-free net-

works is that the critical vaccination fraction is unity – all members of the population must be
successfully vaccinated to eradicate the disease. These sentiments are reflected in a commen-
tary which accompanied the piece by Liljeros et al. (2001) by Philip Ball: “Sexually transmitted
diseases (STDs) call for discrimination. Containing the spread of an STD by focusing on promis-
cuous individuals, who are most likely to pass it on, should be cheaper and more effective than
large-scale random campaigns, according to two new mathematical analyses.”
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Similarly, in a popular piece on scale-free networks written by science writer David Cohen
for the New Scientist (13 April 2002, 2338:24-29), the implications are laid out starkly: “It is
common sense that a programme of vaccination against sexually-transmitted diseases should try
to reach the most promiscuous individuals first. But the idea that health campaigns may be
utterly worthless if they miss these people is a shock.” In this same article, Frederik Liljeros
is quoted as saying that “We can attempt to stop the spread of a virus by blindly vaccinating
huge groups, but without treating these key individuals we may never bring it under control.”
Economic arguments are clearly central to the public health implications here (Dezső and

Barabási, 2002, 1):

However, due to economic or policy considerations the number of available cures is
often limited. This applies to AIDS, for which relatively effective but prohibitively
expensive cures are available, unable to reach the most affected segments of popula-
tion due to economic considerations.

We are concerned that such economic arguments may imbue the scale-free network idea
with an unwarranted attractiveness for some policy makers. Specifically, “destroying hubs”
may be seen as a cheap fix to the problem of the global HIV/AIDS pandemic and jeopardize
funding for capital-intensive but proven health interventions such as safe sex campaigns (which
are always on politically shaky ground), vaccine development, the prevention of mother-to-child
transmission, and the treatment of the destitute poor and other people in resource-poor settings
of the developing world (Farmer, 1999, 2003; Kim et al., 2000).
A primary purpose of our recent papers on inference for the degree distributions of sexual

contact networks was to demonstrate that the empirical support for the belief that transmission-
reduction interventions cannot eradicate STDs is very weak (Jones and Handcock, 2003a,b;
Handcock and Jones, 2003b,a). We show that, even with the small samples that are available
one can say with high statistical confidence that the estimates are outside the infinite variance
range, and hence give additional rationale for the existence of thresholds. The second purpose
was to promote the use of sound statistical methodology to infer the models from data. This
will be an active area of research.
Our recent work (i.e., Handcock and Jones (2003b,a); Jones and Handcock (2003a,b)) has

elicited a response from the authors of a prior analysis of the Swedish dataset (Liljeros et al.,
2001).1 These authors interpreted our comments as critical, and their response has been defen-
sive (e.g., Liljeros et al., 2003b,a). However, we were pleased to see an improvement in their
methods based on an understanding of our work. However, confusions remain and more were
introduced by their response. In the next section we review some of these. Our comments are
not meant as criticisms of Liljeros et al., but to clarify the terms and issues they raise. We have
found the debate both illuminating and useful for shaping our thinking on the issues, and here
capitalize on our ability to write in the more discursive format allowed by a working paper to
address, point-by-point some of the criticisms and points that we see as confused.

1We should note that this work takes the form of three working papers at the Center for Statistics and the
Social Sciences (working paper #’s 21, 23, and 29). In Liljeros et al. (2003b), the authors cite the title of wp29, the
number of wp23, and appear to be responding, at least in part, to wp21. Working paper 23 corresponds to Jones and
Handcock (2003a). There is a second, brief paper in press at Nature, and wp29 has been submitted for publication.
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2 Models, Issues, Definitions and Interpretations

Unless otherwise noted, the following quotes are from Liljeros et al. (2003b).

1. “Specifically, Jones and Handcock analyze the probability distribution function [sic] p(k),
a function from which one obtains less reliable information than from the cumulative
distribution,”

(a) First a clarification on nomenclature: The function p(k) has discrete support and is
usually referred to as the probability mass function (PMF), a convention we follow
in our papers. The term probability distribution function is often used as a synonym
for the cumulative distribution function. It is possible that there is confusion with
the probability density function with is used for continuous variables. It seems clear
from the context that Liljeros et al. mean the PMF.

(b) In our work, we model the probability distribution which is completely characterized
by the PMF or, equivalently, the cumulative distribution function. As both can be
mathematically derived from the other in this case, it makes no sense to say that we
are modeling one rather than the other. It is more accurate to say we are modeling
the distribution.

(c) A clear distinction needs to be drawn between the underlying probabilistic model
and the various statistics used to estimate the model. Specifically, between the PMF
and CDF on one hand and the empirical PMF, CDF or survival function on the
other. The former are of primary interest and the latter are mainly useful to infer
the former. So there may be differing information content in the statistics employed
for the same model. An advantage of likelihood-based methods is they encapsulate
the information in the data via sufficient statistics for the model.

(d) In light of these comments, the claim that the PDF has less reliable information in
it than the CDF is nonsensical. Liljeros et al. may be confusing issues of statistical
estimation with those of probabilistic representation. We note that the information
we use represent sufficient statistics for the model, while the implicit method that
Liljeros et al. use for their estimation procedure makes it unclear what information
is actually used. This means the quantification of the uncertainty of their estimate
is very difficult. As we discuss in our papers, the estimates they provide of the
uncertainty are based on an inappropriate method and will, in general, be inaccurate.
Note also that the subjective aspects of the curve fitting method hinder reproducibility
by others or on similar datasets. For example, should we use a cutoff of 4, 5, 19 or
20? Should we fit the line to all points in the empirical CDF or only those where
there are jumps? Each of these require judgment that is not reflected in the interval
estimates.

2. “In the following, we argue that the claims of Jones and Handcock can be interpreted in
a misleading fashion.

Hopefully not. We urge readers not to misinterpret our claims.
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3. Liljeros et al. correctly note that the existence of epidemic thresholds depends on the
structure of the network and other factors beside the distribution of the number of part-
ners in the last year. We agree with these statements and are gratified to see Liljeros et
al. repeat them(Handcock and Jones, 2003b). Our work suggests that the evidence from
the distribution of the number of partners in the last year does not support infinite vari-
ance. The jump from inference to epidemic thresholds requires a model for the complex
structure of social networks, of which the distribution of the number of partners is only
one component. We show in Handcock and Jones (2003a) that under one state-of-the art
model (viz., Newman (2002)), these thresholds exist.

Liljeros et al. also note that mathematical models are approximations to the real-world
network. Many have been tempted to extrapolate from such approximation representations
to the real-world without careful assessment of the quality of the approximation. This
means that one answer to the question of finite variance for real-world sexual networks
is, trivially, yes! However, this is an age old debate: some have argued the much of
the mathematical research on networks is not relevant to epidemiology and public health
because of the difficulty and rarity with which justification for the jump from mathematical
models to the real-word behavior is made. A common complaint is that the models are
too simple (as here) or the mathematics too complicated (Brauer and van den Driessche,
2002). However, this is clearly too extreme as much has been learned from both their
qualitative and quantitative behavior (Anderson and May, 1991; Brauer and van den
Driessche, 2002). Much more can potentially be learned, but only if sufficient justification
for the mathematical approximations is made. We believe that energies are best spent
addressing this fundamental research question rather than making radical and weakly
supported claims.

4. “The estimates by Jones and Handcock in fact agree with the estimates already reported
by us”

In one of our papers we tried to privilege the simplest proposed power-law model (Al-
bert and Barabási, 2000) by only comparing models with different scaling exponents
(Jones and Handcock, 2003b). Based on likelihood-based estimates and the Bayesian
Information Criterion (BIC), our model selection procedure found the best fitting
Yule model for both males and females to be for degrees exceeding kmin=1. Liljeros
et al. (2001) used kmin = 5 for men (retaining 2% of the data), and kmin = 4 for
women without accounting for this in their quantification of uncertainty. These are
different models. This statement can be seen visually in Figure 1 displaying the range
of interval estimates of the scaling parameter for the probability mass function for
Swedish males and females (Jones and Handcock, 2003b). Comparisons of the inter-
vals as kmin increases shows the sensitivity of the 95% bootstrap confidence intervals
to the upper tail of the partnership distribution, defined as k > kmin, where k is the
number of sex partners in the previous 12 months. For both males and females the
best-fitting model has kmin = 1. By contrast, the intervals reported by Liljeros et al.
(2001) are marked in red. For these values, our estimates of parameter uncertainty
are six times greater than their reported intervals.
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Figure 1: Interval estimates of the scaling parameter, ρ, for the generalized Yule probability
mass functions for Swedish males and females. Data show the sensitivity of the 95% bootstrap
confidence intervals to the upper tail of the partnership distribution, defined as k > kmin, where
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et al. (2001) are marked in red.
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From a scientific perspective, these are not the same estimates.

We note that we also show (Jones and Handcock, 2003b; Handcock and Jones, 2003b;
Jones and Handcock, 2003a) that the distributions are outside the infinite variance
range for populations in two other countries (Uganda and the USA). This appears to
triple the total number reported in the literature.

5. “Since P (k)[sic] is a summation of p(k), the exponent ρ is related to the exponent α by
the equation 1+α = ρ. Hence the values of α that are somewhat above 2 reported in Ref.
2 do not differ from the values of ρ that are somewhat above 3 reported in Ref 1.

As noted above, our interval estimates differ from theirs. The differences between the
estimates is not a function of this simple relationship, nor do our papers confuse α
and ρ. We have previously communicated this to Liljeros et al..

6. “the Yule distribution does not display a power law for small k (Fig.1).”

(a) Networks exhibiting power-law scaling have been referred to as “scale-free” networks
in Amaral et al. (2000) and subsequent publications. This attribution is associated
with properties of the implicit underlying stochastic mechanism, and the literature
has been quite vague on the definitions of key terms. We have tried to be precise.

LetK be the degree of a randomly sampled person from the population and P (K = k)
be the corresponding PMF. Let f and g be two functions with support the whole
numbers. We take f(k) � g(k) to mean that there exist constants c1, c2 such that
0 ≤ c1 < f(k)/g(k) ≤ c2 < ∞ for k = 1, . . .. We then say that P (K = k) has
power-law behavior if P (K = k) � k−ρ. Such distributions are approximately scale-
free in the sense that P (K = k/c) � P (K = k) for c > 0. Recent empirical work
(Amaral et al., 2000; Liljeros et al., 2001) has claimed that some sexual network degree
distributions have PMF for network degree of the form, P (K = k) ≈ k−ρ, k >> 1,
where P (K = k) is the probability of observing exact degree k and ρ is referred to as
a scaling parameter.

Under the definitions in our papers, the Yule distribution has power-law behavior.
Indeed, power-law behavior is only defined asymptotically for k large.

In Liljeros et al. (2001), Liljeros et al. state: “Scale-free networks, which are char-
acterized by a power-law decay of the cumulative distribution P (k) ≈ k−α, may be
formed as a result of preferential attachment of new links between highly connected
nodes [Simon 1955, Barabasi and Albert 1999].” Thus their use is consistent with our
more formal one. The first reference is given to Simon, whom we cite as providing a
stochastic mechanism resulting in the Yule distribution. Hence we struggle to make
sense of their statement. It seems in their current paper that they use the term
“power-law” to refer to the particular model (Johnson et al., 1992):

P (K = k) =
1

ζ(ρ)kρ
, k = 1, 2, . . . (1)

where ζ(ρ), the Riemann zeta function of ρ. We discuss this in detail (Jones and
Handcock, 2003a; Handcock and Jones, 2003b). Linguists proposed an underlying
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the stochastic mechanism called the Zipf-Estroup law (Estroup, 1916; Zipf, 1949)
analogous to that for the Yule proposed by Simon. This is often referred to as the
discrete Pareto distribution in analogy to the continuous version (which has been used
as a model for degree distribution in May and Lloyd (2001)). It is also referred to
as the (Riemann) zeta distribution. Two examples of this distribution are Zipf’s law
(ρ = 1) relating the relative frequency of words in a text to their rank, and Lotka’s
law (ρ = 2) for the number of authors making contributions.

In their current paper, power-law is not defined. However, it appears they are using
the discrete Pareto in contrast to the Yule cited in their original paper.

We urge readers to use a consistent notation, with key terms defined. We have sug-
gested a notation, but the reader can choose one appropriate for their circumstance.

(b) The choice among the discrete Pareto and the Yule should be based on the reasonable-
ness of the stochastic mechanism that underlies them. They both exhibit power-law
behavior. In Jones and Handcock (2003b); Handcock and Jones (2003b) we reference
discussions of the different mechanisms.

(c) In their Table 1, Liljeros et al. (2003b) compare the discrete Pareto to the Yule fit for
k > 0. We compared a range of models in Handcock and Jones (2003b) (which they
cite). For k > 0 the shifted negative binomial model provides a better fit to the data
than both the Yule and discrete Pareto (in terms of the corrected AIC and BIC). The
negative binomial has finite variance, and implies an epidemic threshold exists. See
Handcock and Jones (2003b) for details.

7. “As social scientists are no longer forced to select mathematical models on the basis of
analytical tractability at the cost of realism [10], it is surprising that Jones and Handcock
do not select from the more general models including preferential attachment published in
the scientific literature [Albert and Barabasi 2002].”

This comment makes no sense. Our work (which they cite) is focused on the proposal,
development and analysis of an array of degree models with underlying stochastic
mechanisms including preferential attachment. These include models in Albert and
Barabasi (2002)! In these papers we use likelihood-based model selection procedures
to assess the fit of the different models to three large distributions of sexual partner
counts: Uganda, Sweden, and the USA. Five of the six single-sex networks were fit
best by the negative binomial model (not the Yule or other preferential attachment
model). The American women’s network was best fit by a power-law model, the Yule.
For most networks, several competing models fit approximately equally well. These
results suggest three conclusions: (1) no single unitary process clearly underlies the
formation of these sexual networks, (2) behavioral heterogeneity plays an essential
role in network structure, (3) substantial model uncertainty exists for sexual network
degree distributions. Behavioral research focused on the mechanisms of partnership
formation will play an essential role in specifying the best model for empirical degree
distributions.

As far as we know, this is one of the first papers to appear that proposes different
power-law and non-power-law models and assesses their empirical fit using principled
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methods.

We urge Liljeros et al. to read the paper they cite. Our work has argued for the use
of more realistic models - and evaluated candidates. We would have compared the
models in this paper to models proposed by Liljeros et al., but have not found any
(except the single “analytically tractable” one they use in Liljeros et al. (2001)).

There are many forms of network structures that can be termed preferential attach-
ment. The Yule and Waring are two examples induced by a dynamic mechanism
where the probability that a tie is made with any particular individual is a function
of that individual’s degree (e.g., proportional). However, it is worthwhile separating
causal processes from associative ones. If the Yule or Waring distribution fits the
degree distribution it may not be that a pure preferential attachment mechanism
is the cause. In fact, the apparent attachment is likely to be induced by assorta-
tive matching on partner characteristics and other local network characteristics (e.g.,
gender, race, age, economic status, martial status). In fact, disassortative mating
is probably more common in the activity context (e.g., men with multiple partners,
women monogamous), and the level will vary by culture/subgroup. (e.g., polygamy
vs. bathhouse).

Finally - despite the attraction of physicists to preferential attachment models very
few social scientists would recognize preferential attachment as a reasonable model
for sexual behavior. It is, however, a reasonable model for technological and some
other networks.

8. “Another difference between the analyses of Refs. 1 and 2 is that Jones and Handcock
assume that the data are best described by a Yule distribution [Simon 1955].”

As noted in the previous item, the cited paper compared multiple models. Despite its
simplicity the Yule has been proposed as a model for stochastic processes going back
over 80 years. In Jones and Handcock (2003a,b) we assume, but did not presume the
Yule model as was done in Liljeros et al. (2001). Ironically, this was done to show
that even with the assumption of the model form, the empirical support for infinite
variance was weak. Our analyses in the cited paper show that the Yule is not the
best model. Table 1 in Liljeros et al. (2003b) verifies this.

3 The use of cumulative lifetime numbers of partners

The multiplicity of forms of networks provide great scope for analysis. Sexual partnerships and
disease spread are co-evolving dynamic processes, and mathematical models are idealizations of
complex social and behavioral dynamics. The very simplistic models considered here involve a
severe reduction of that complexity.
Liljeros et al. argue for the modeling of survey information collected on cumulative lifetime

number of sexual partners as input to models of sexual networks. We welcome this as such
analysis has potential. However it exacerbates temporal aggregation of partnerships, and hence
confounds the sequence of partnerships and concurrency. Both of these are important for the
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spread of STDs(Morris et al., 1997). In addition to these conceptual issues, the statistical
analysis is also fraught with difficulties, some of which we discuss below.
Given the grain of the data collection, the single year partner count comes closest to ap-

proximating the instantaneous network, the network that a pathogen must traverse. It will
also give a more accurate measure of the STD incidence at the time of the survey. The use of
the total partners will obscure the changes in the partnership networks over time. This is an
essential consideration in Uganda which now has a mature or declining epidemic after years of
rapid growth in incidence. Recent work by Ferguson and colleagues has clarified the connection
between instantaneous and cumulative networks.
Further the survey data that Liljeros et al. consider does not have information on the total

number of sexual partners - they only have the information on the number of partners acquired
to this point in a person’s life. Such 100% censoring greatly biases analyses that do not adjust
for it. In particular, the exponents reported in the earlier paper are invalid. We chose the 1yr
information because it does not suffer from this defect.
The relevance of cumulative “networks” generated from the cross-sectional survey used by

Liljeros et al. is more problematic than they imply. They contain no information on the temporal
patterning of partnerships. A person with degree 10 who contracts an STD at a time when he
has one stable partner is not at risk of transmitting the pathogen to his previous nine partners.
If we are interested in the epidemiologically relevant networks for viral STDs, then static

networks based on completely censored data require more justification than that supplied by
Liljeros et al.. In particular, we welcome further justification from the authors or others for the
use of this information.
As an aside, many STDs such as Chlamydia trachomatis, and other bacterial STIs would

not be well modeled on a cumulative network (even if such networks were reasonable models of
the risk structure of the population). Partner’s age is clearly a risk factor for the non-fatal viral
STDs such as HSV-2 or HPV. The period of infectivity of genital C. trachomatis in humans
is not well understood, but estimates place it at around 12 months, with many individuals
spontaneously clearing infection without treatment (Katz, 1992).
Newman (2002) gives the most advanced two-sex model for epidemic behavior based on

partnership distributions. He shows that there will always be an epidemic (i.e., no transmission
threshold) only if one of the distributions has an infinite variance. If both variances are finite
then reducing transmissibility will reduce the epidemic threshold and even make an epidemic
impossible. Newman, in his choice of data to use for his study of epidemic thresholds and
transmissibility uses the 12 month partnership data, noting:

“One should observe that the network studied in [Liljeros et. al. 2001] is a cumulative
network of actual sexual contacts - it represents the sum of all contacts over a specified
period of time. Although this is similar to other networks of sexual contacts studied
previously [50, 51], it is not the network required by our models, which is the instantaneous
network of connections (not contacts-see Section II). While the network measured may be
a reasonable proxy for the network we need, it is not known if this is the case.”

Our view is close to Newman on this - all network data provides information of interest,
some are better than others, and it depends on the setting. The choice is of particular relevance
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Figure 2: Reported cumulative lifetime degree distribution for Swedish men. The plots are
histograms showing the absolute number of self-reported degree k (including zeros). The lines
connect the PMF values for the OLS discrete Pareto fit from Liljeros et al. (2003b) and the Yule
with ρ = 2.54. Note the extensive heaping and the poor quality of the fits of these models.

here as Newman’s interest is in epidemic thresholds based on a particular model for the sexual
network.
We should also note that the primary interest is in the number of sexual partners rather than

the self-reported number. The former is important for determination of epidemic thresholds,
while the later has marginal secondary interest in terms of the pattern of bias and reliability.
Figure 2 represents a histogram of the lifetime data for the Swedish men.
It is clear that there is substantial rounding of the self-reported responses(Morris, 1993).

Most of this is to round figures, e.g., 10, 20, 30, . . ., 100, . . ., with some to secondary figures,
e.g., 5, 15, 25, . . ., and some to 12 and 24 values. Such so-called “coarsening” or heaping of
self-reports is natural for open-ended interview questions. It has been extensively studied (see,
e.g, (Roberts and Brewer, 2001) for a review) and is present in a wide range of social science data
(Handcock and Morris, 1999). In particular (Wiederman, 1997) conducts an in-depth analysis
for the lifetime number of sex partners. Wiederman notes that respondents to sensitive questions
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demonstrate a marked preference for “round” numbers, but such unreliability does not seem to
manifest consistently as either over-reporting or underreporting (Marquis et al., 1986).
Clearly estimation methods that do not take this into account may produce inaccurate

estimates and incorrectly assess the quality of the estimates.
We now describe a procedure to take this into account. One advantage of likelihood methods

is their ability to be adapted to account for measurement error processes such as rounding.
Recall that the likelihood reflects the probability of observing what we have, given a model for
the phenomenon. If a respondent reports a value of 20, we may infer that this is likely to be
a rounded value and interpret it as a broader statement of the actual number of partners. For
example, we could interpret this as a value from 16 to 24 inclusive. This is a means of capturing
the unreliability of the reported value, while still indicating the overall level of the response.
Each reported value can be ascribed a separate reliability. For example, a report of 1 may be
taken as (close to) reliable, while a value of 100 could be taken as a value from 75 to 125. We note
that many refinements of this approach are possible, including data-adaptive reliability schemes.
However, here we will use a scheme that treats larger rounded values as less reliable than small
values. Methodologically, this can be directly incorporated into the likelihood function. For
technical details, see Handcock and Jones (2003a).
It is quite difficult to see make graphical comparisons between the fitted models in Figure

2 because of the well-known skewness of the responses. Handcock and Morris (1999) develop
a general framework for comparative distributional analysis based on the concept of a relative
distribution. The relative distribution provides a graphical display that simplifies exploratory
data analysis and a statistically valid basis for the development of hypothesis-driven summary
measures The relative distribution is the set of percentile ranks that the observations would
have in a reference distribution. In this case it is the percentile ranks of the count of sexual
partners within a reference distribution (e.g., Yule with ρ = 3.54.) Handcock and Morris (1999)
is a book–length treatment of relative distribution theory, and include historical references. The
variant for discrete data is considered in Chapter 11.
While we can display the relative distribution of the self-reported values to as estimate of the

distribution, it is preferable to take into account the rounded processes. A simple way to do this
is to consider ranges of counts (e.g., 1, 2, 3, 4−6, 7−13,. . . , 75−100, > 100). More sophisticated
version of this are possible but it serves for exploratory data analysis.
Figure 3 shows the PMF for the relative distribution of the cumulative lifetime sexual part-

ners using two Yule models as the reference distribution. The smooth line encodes the relative
frequency of the counts to the value expected under the reference distribution for each of the
above ranges of counts. The value of this ratio is shown on the vertical axis. The top axis
shows the the cumulative proportion under the reference, and the bottom the midpoint of the
group. The long-dashed line at unity indicates what we would expect if the two distributions
were identical. We can see that there are fewer self-reports of 1 and 2 than expected under the
Yule model, and that there are many more self-reports than expected in the upper tail (degrees
above 3). The over-abundance increases until there are over 15 times as many self reports than
expected in the range above 20.
These exploratory tools are helpful to see the deviation between the observed values and

proposed models. Liljeros et al. (2003a) also analyze the lifetime data, and criticize our analysis:
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Figure 3: Relative probability mass function for the cumulative lifetime degree distribution to
Yule reference distribution. Data are for Swedish men. The plots are PMFs showing the absolute
number of self-reported degree k (including zeros). The lines are two power-law fits to the PMF.
Note the effect of the heaping and rounding on the upper tail, and the poor fit to the lower tail.
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1. “Jones and Handcock also choose to ignore two of the datasets analyzed in Ref. 2, those
concerning the number of lifetime partners. Such a practice of limiting one’s analysis to a
subset of the data (viz., number of partners during a one year period) places unnecessary
restrictions on understanding the structure of the network of sexual contacts . . .”

The reason we chose not to report the lifetime partners are given in the cited paper.
There are good scientific reasons to be wary of the use of recorded lifetime partners
values which we discuss above. In our paper, we chose to consider data from three
separate countries rather than just one country. We could ask why Liljeros et al. did
not consider these, or other countries, in their analysis, but that would be as facile a
criticism as theirs.

2. “the analysis in Ref. 2 provides striking support for the hypothesis that the distributions
of number of distinct sexual partners decay as a power law.”

The advantage of the graphical methods we use above is that they enable us to see
clearly the gross fit of candidate models to the data, especially in the presence of
substantial rounding.

The best fitting Yule distribution for kmin = 20 has ρ = 2.54. As would be expected,
the best fitting discrete Pareto is very similar with ρ = 2.50. Based on the BIC the
Yule is a slightly better fit.

Figures 2 and 3 display the fit of these models, and a model with slightly lower
exponent (ρ = 2.16) given in Liljeros et al. (2003b). We can see there is a substantially
poor fit to the bulk of the distribution. This visual impression is supported by a
Monte-Carlo significance test that rejects the hypothesis of equality.

Figure 4 focuses in on the upper tail. It graphs the relative mass function for the data
above 20 to the Yule distribution conditional on being above 20. As expected, the
fit is substantially improved. However, the power-law models struggle to capture the
clustered nature of the data especially at 50 and 100. Again, the visual impression is
supported by a Monte-Carlo significance test that rejects the hypothesis of equality
in both cases.

These figure show that in attempting to fit the extreme tail of distribution the bulk
of the distribution is poorly fit. In addition the rounding and heaping confound the
estimation even for this tail.

It is worthwhile noting that under the best fitting power-law model (ρ = 2.54), the
tails above 20 contain only 1.23% of the people and 25.3% of the sexual partnerships.
Models that accurately represent the other three-quarters of the sexual partnerships
would have epidemiological value.

Similar conclusions hold for the Swedish women. They generally self-report fewer
partners. This is a well-known phenomenon (Morris, 1993; Wiederman, 1997). We
will report results elsewhere (Jones and Handcock, 2002).

Finally, repeating the process in Handcock and Jones (2003b) and Jones and Hand-
cock (2003b) we can obtain the best fitting power-law model among those considered
in those papers. These are graphically displayed in Figure 5.
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Yule reference distribution conditional on degree above 20. Data are for Swedish men.
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Figure 5: Interval estimates of the scaling parameter, ρ, for the generalized power-law probability
mass functions for Swedish males and females. Data show the sensitivity of the 95% bootstrap
confidence intervals to the upper tail of the partnership distribution, defined as k > kmin,
where k is the cumulative lifetime number of sex partners. For males the best-fitting model has
kmin = 2, and for females kmin = 4. By contrast, Liljeros et al. used kmin = 20 for males and
females. For these values, our estimates of parameter uncertainty are three times greater than
their reported intervals which we have marked in red.
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The best fitting models are Waring for both males and females. The models based
on kmin = 20 provide substantially worse fit based on the BIC.

(a) “However, Jones and Handcock’s conclusion is somewhat premature since research
convincingly demonstrates that contagious processes differ fundamentally between
networks with power law decaying degree distributions and networks with fast de-
caying degree distributions (Newman, 2002; May and Lloyd, 2001). Specifically, if a
detectable epidemic threshold exists, it will certainly be very small as the variance of
the distribution of number of sexual partners is much larger than the mean [13-15].”

The two works Liljeros et al. cite to support this claim (Newman, 2002; May and
Lloyd, 2001) both make it quite clear that the thing that makes “scale-free” networks
qualitatively different is infinite variance of the degree distribution. For example,
May and Lloyd (p. 2):

“For the scale-free distributions considered here, CV is infinite because the vari-
ance of the connectivity distribution is infinite. In contrast with the case of a
homogeneous network, which exhibits threshold behavior at ρ0 = 1, R0 for the
scale-free network (at least for the infinite population case) is infinite for any
nonzero transmission probability and so an outbreak can always occur.”

As noted above, Newman’s paper is full of discussion of epidemic thresholds. He
presents analytic formulae for calculating epidemic thresholds. We should note that
he never once uses the term “scale-free” in the paper. He too is quite explicit under
which circumstances critical behavior of the epidemic will disappear (p. 9):

“. . .if the degree distributions are truly power law in form, then there exists an
epidemic transition only for a small range of values of the exponent of the power
law. . . if [ρ] < 3, Tc = 0 . . . As long as [the transmissibility] is positive, we will
always be in epidemic regime, and this would clearly be bad news.”

Similarly, Dezső and Barabási (2002, 1) note that the key reason scale-free networks
are of epidemiological significance is that they are characterized by infinite variance
of the degree distribution:

“Curing the hubs. The vanishing epidemic threshold of a virus spreading in a
scale-free network is rooted in the infinite variance of the degree distribution.”

Non-specialists should be aware that without infinite variance, the relevance of “scale-
free” properties for epidemic spread is greatly reduced. In a network characterized by
finite variance of the degree distribution, in what way – specifically – do “contagious
processes differ fundamentally for scale-free and single-scale networks”? The two
works cited in support of this statement focus on infinite variance of the degree
distribution.

Our work indicates that the confidence intervals are in fact many times larger than
what Newman termed “quite large.”
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4 Conclusion

Despite the outstanding issues discussed above, there are statements that most people could
agree on:

1. Degree distribution of sexual partnerships tend to be right skewed. This will influence the
diffusion of STDs.

2. Infinite variance sexual partner degree distributions do not exist in the real world.

3. As the real-world population is finite, mathematical models based on infinite population
approximations will need further justification before their conclusions can be applied to
determine policy.

4. Epidemic thresholds exist, but some populations may be close to the thresholds.

5. Models which are based purely on information on the degree distribution require substan-
tial further justification before they can be used to determine policy. Nodal attributes,
such as age, gender, ethnicity or marital status, are also of fundamental importance for the
formation of networks (Morris, 1991). Successful mathematical models will be required to
incorporate more information about the population beyond degree.

6. The structure of real-world sexual networks is complex.

It would be productive to agree on common ground and work on the many remaining issues.
We believe that it is sufficient to foster collaboration, and we intend to focus our energies on
productively working on those issues.
In sum, the results presented in our work and others indicate that a general behavioral model

for the formation of human sexual contact networks is still lacking. Preferential attachment is
one model that has been previously suggested, and the assumptions of preferential attachment
have been incorporated into our work. However, this mechanism does not perform especially well
when confronted with alternative models. We suggest that incorporating actor heterogeneity and
the timing and sequence of partnerships is essential for future network models in epidemiology
(Handcock, 2002; Morris, 2002). Furthermore, if we are to move beyond ad hoc curve fits of
network degree distributions and make real progress in understanding the stochastic mechanisms
which generate empirical networks, two points are essential: (1) we must recognize that there is
much more to sexual networks than degree distributions, and (2) collaboration between network
modelers, epidemiologists, and social scientists is essential.
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human sexual contacts. Nature 411 (6840), 907–908.

Liljeros, F., C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Åberg (2003). Authors’ reply.
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