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Abstract

This paper presents recent advances in the statistical modeling of random graphs that have an im-
pact on the empirical study of social networks. Statistical exponential family models (Wasserman
and Pattison 1996) are a generalization of the Markov random graph models introduced by Frank
and Strauss (1986), which in turn are derived from developments in spatial statistics (Besag 1974).
These models recognize the complex dependencies within relational data structures. A major bar-
rier to the application of random graph models to social networks has been the lack of a sound
statistical theory to evaluate model fit. This problem has at least three aspects: the specification of
realistic models, the algorithmic difficulties of the inferential methods, and the assessment of the
degree to which the graph structure produced by the models matches that of the data. We discuss
these and related issues of the model degeneracy and inferential degeneracy for commonly used
estimators.

KEY WORDS: Random graph models; log-linear network model; Markov �elds;

Markov Chain Monte Carlo; Statistical Exponential Families;

Psuedolikelihood.



1. INTRODUCTION

Networks are a useful device to represent “relational data”, that is, data with properties beyond

the attributes of the individuals (nodes) involved. Relational data arise in many social science

fields and graphical models are a natural approach to representing the regular pattern of the rela-

tions between nodes. In typical applications, the nodes in a graph represent individuals, and the

ties (edges) represent a specified relationship between individuals. Nodes can also be used to rep-

resent larger social units (groups, families, organizations), objects (airports, servers, locations), or

abstract entities (concepts, texts, tasks, random variables). This framework has many applications,

including the structure of social networks, the dynamics of epidemics, the interconnectedness of

the WWW, and long-distance telephone calling patterns.

We consider here stochastic models for such graphs. These models attempt to represent the

stochastic mechanisms that produce ties, and the complex dependencies this induces. Collectively,

the class of models we consider form a statistical exponential family (Strauss and Ikeda 1990).

This class has been referred to as the “p∗” class of models in the psychology and sociology lit-

eratures (Wasserman and Pattison 1996). Given their general nature and applicability, we shall

refer to them simply as exponentially parametrized random graph models, and note that in their

general form they can represent any finite random graph model. There is a growing literature on

these models – see Snijders (2002); Wasserman and Robins (2004). A natural sub-class of these

are the Markov random graph models introduced by Frank and Strauss (1986). Exponentially

parametrized random graph models have connections to a broad array of literatures in many fields,

and here we emphasize its links to spatial statistics, statistical exponential families, log-linear mod-

els, and statistical physics.

Historically, exploration of the properties of these graphical models has been limited by three

factors. First, the complexity of realistic models has limited the insight that can be obtained using

analytical methods. Second, statistical methods for stochastic simulation from general random

graph models have only recently been developed (Crouch et al. 1998; Corander and Dahmstrom

1998; Snijders 2002). Because of this, the properties of general models have not been explored in

depth though simulation studies. Third, the properties of statistical methods for estimating model

parameters based on observed networks have been poorly understood. The models and parameter

values relevant to real networks is therefore largely unknown.

In this paper we examine the nature and properties of graphical models for social networks

by extending methods for the stochastic simulation of, and inference for, random graphs. The

approach builds on the work of Geyer and Thompson (1992).

Our main contribution is to address a persistent obstacle to applied work in this area: the

problem ofinferential degeneracy. Effective inferential strategies for general random graph models

depend upon the use of Monte Carlo quadrature (Kalos and Whitlock, 1986) to estimate likelihood
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values; efficient computation for such quadratures generally requires the use of Markov Chain

Monte Carlo (MCMC) methods. Many previous attempts to develop MCMC-based estimation for

Markov graph models have found that the algorithms nearly always converge to degenerate graphs

– graphs that are either empty or complete – or that the algorithms do not converge consistently.

Using statistical exponential family theory, we show that this is a function of the form of the model

and algorithm used.

In the next section we review the statistical theory of social network models expressed in expo-

nential form. In Section 3, we consider forms of inference for the parameters of the models with

focus on psuedolikelihood and likelihood-based approaches. In Section 4 we review the geometry

of random graph models, and in Section 5 use this to define a form ofmodel degeneracy, a related

form of inferential degeneracy, and some possible solutions. In Section 6 we illustrate these results

using a simple random graph model that captures pair dependency.

2. RANDOM GRAPH MODELS

Let the random matrixX represent the adjacency matrix of an unvalued graph onn individuals.

We assume that the diagonal elements ofX are 0 – that self-partnerships are disallowed. Suppose

thatX denotes the set of all possible graphs on the givenn individuals. The multivariate distribution

of X can be parameterized in the form:

Pθ,X(X = x) =
exp

[
θT t (x)

]
c(θ,X)

x ∈ X (1)

whereθ ∈ 2 ⊆ IRq is the model parameter andt : X → IRq are statistics based on the adja-

cency matrix (Strauss and Ikeda 1990). There is an extensive literature on descriptive statistics for

networks (Wasserman and Faust 1994; Borgatti et al. 1999). These statistics are often crafted to

capture features of the network (e.g., transitivity, clustering, mutuality and betweenness) of primary

substantive interest to the researcher. Often such substantive considerations cause the researcher

to have a specific set of statistics in mind; the above model then has the property of maximizing

the entropy within the family of all distributions with given expectation oft (X). Paired with the

flexibility of the choice oft this property does provide some justification for the model (1) that will

vary from application to application.

The denominatorc(θ,X) is thenormalizing functionthat ensures the distribution sums to one:

c(θ,X) =
∑
y∈X

exp
[
θT t (y)

]
. This factor varies with bothθ and the supportX and is the primary

barrier to inference under this modeling scheme. We specify a model via the triple(X, t, θ).

Let C be the convex hull of{t (x) : x ∈ X}. Note thatX contains at mostN = 2n(n−1)

graphs so that the distributions in(1) form a statistical exponential model for the underlying finite

exponential family of probability distributions with respect to counting measure onX. We assume
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that the dimension ofX is q so that the family is minimal and the parameter space is{θ : c(θ,X) <

∞} = IRq so that it is also full. Although this is the most common situation for social network

models, the results below hold with minimal changes if the parameter space is chosen to be a

relatively open subset of IRq. In the remainder we will suppress the reference toX. The dimension

of 2 is at mostN − 1 (for the “saturated” model), although it is typically much smaller than this.

An alternative specification of the model (1) clarifies the interpretation of the parameters. LetI

be the set of indices of the unique elements ofX, Xc
i j = {Xkl : kl ∈ I/{i j }}, xc

i j = {xkl : kl ∈ I/{i j }},

x+

i j = {xc
i j ∪ {xi j = 1}}, andx−

i j = {xc
i j ∪ {xi j = 0}}. Thus, Xc

i j represents all elements in the

graph excludingXi j while x+

i j andx−

i j represent the graphx altered so thatxi j equal to 1 and 0,

respectively. The full conditional distributions ofXi j are

logit[Pθ (Xi j = 1|Xc
i j = xc

i j )] = θTδ(xc
i j ) x ∈ X (2)

whereδ(xc
i j ) = t (x+

i j ) − t (x−

i j ) (Strauss and Ikeda 1990). The statisticδ(xc
i j ) is the change in the

graph statistics whenxi j changes from 0 to 1. Henceθ can be interpreted as the increase in the full

conditional log-odds of a partnership between individualsi and j induced by the formation of the

tie, conditional on all other ties remaining unchanged. In the homogeneous Bernoulli graph, for

example,θ is the common log-odds of individual tie formation.

The most commonly used class of random graph models assume Markov dependence in the

sense of Frank and Strauss (1986). For these models, dyads that do not share an individual are

conditionally independent; this is an idea analogous to the nearest neighbor concept in spatial

statistics. Typically a homogeneity condition is also added: all isomorphic graphs have the same

probability under the model.

3. INFERENTIAL DEGENERACY FOR RANDOM GRAPH MODELS

Developing inference within a likelihood framework has the advantage of being able to draw

upon a statistical theory for closely related models in statistical physics and spatial statistics (Besag

1975; Geyer and Thompson 1992; Geyer 1999). Direct calculation of the log-likelihood:

L(θ; x) ≡ log[ Pθ (X = x)] = θT t (x)− κ(θ) x ∈ X (3)

whereκ(θ) = log[c(θ)], by enumeratingX is infeasible for graphs of more than 30 individuals.

Because of these computational difficulties, alternative means of approximating the maximum

likelihood estimator (MLE) forθ :

θ̂ = argmaxθ∈2Pθ (X = xobserved|t,X) (4)

have been suggested. Frank (1971) and Frank and Strauss (1986) consider (linear) approximations

to the cumulant generating function:

C(ψ) = logE [ψ t (X)]
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as a means to solve the likelihood equations

Eθ [t (X)] = t (xobserved) (5)

whereEθ (·) is the expectation underPθ . Unfortunately, this approach is generally difficult to apply

to general multiparameter models unless supplemented by a means of simulation from the same

network model (Corander and Dahmstrom 1998). Snijders (2002) considers stochastic approxi-

mation algorithms that attempt this. Until recently inference for the model (1) has be almost ex-

clusively based on a local alternative to the likelihood function referred to as thepseudolikelihood

(Strauss and Ikeda 1990). This was originally motivated by (and developed for) spatial models by

Besag (1975). The pseudolikelihood for model (1) is algebraically identical to the likelihood for a

logistic regression of the unique elements of the adjacency matrix on the design matrix withi th row

δ(xc
i j ) (See (2)). The value of the maximum pseudolikelihood estimator can then be expediently

found by using logistic regression as a computational device. Importantly, the value of the maxi-

mum likelihood estimator for the logistic regression will also be the maximum pseudolikelihood

estimator. Note, however, that the other characteristics of the maximum likelihood estimator do

not necessarily carry over. In particular, the standard errors of the estimates ofθ from the logistic

regression will not be appropriate for the maximum pseudolikelihood estimator (MPLE). While

in common use (Wasserman and Pattison 1996; Anderson et al. 1999), the statistical properties of

pseudolikelihood estimators for social networks are only partially understood.

3.1 Existence and uniqueness of MPLE

One concern with the maximum psuedolikelihood algorithm is that it produces infinite values

even in situations where the psuedolikelihood converges. As it is usually assumed that all param-

eters are finite this is undesirable. If the MPLE does not exist then the estimates produced by

software are determined by the precise convergence characteristics of the algorithm. As such, the

estimates are arbitrary and misleading.

We now give a precise description of the existence and uniqueness of the MPLE for social

network models.

Result:

1. A necessary and sufficient condition for the MPLE to exist (i.e., to be finite) is:∀α ∈

IRq, ∃i, j such that

(2xi j − 1)αTδ(xc
i j ) ≤ 0

This occurs with positive probability.

2. If the MPLE exists, it is unique. In addition, when it exists, it can be found as the unique
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solution to psuedolikelihood equations:∑
i, j

xi j πi, j =

∑
i, j

xi j δ(x
c
i j )

where logit(πi, j ) = θTδ(xc
i j ).

The condition (1) has a simple interpretation: The MPLE exists unless a separating hyperplane

exists between the scatterplot of the ties and non-ties in the space defined by theδ(xc
i j ). This

behavior is referred to as “separation” when the model is logistic regression (Albert and Anderson

1984; Santner and Duffy 1986).

Heinze and Schemper (2002) suggest, in the context of logistic regression, a penalized likeli-

hood approach. For social networks, we can consider a penalized psuedolikelihood using Jeffreys

invariant prior as the penalty function (Heinze and Schemper 2002; Firth 1993). Under this modi-

fication the estimates will be finite and may reduce the bias of orderO(N−1).

3.2 Existence and uniqueness of MLE

Many properties of the MLE can be derived from statistical exponential family theory (Barndorff-

Nielsen 1978). Denote the relative interior ofC by rint(C) and the relative boundary by rbd(C) =

cl(C)\rint(C).

Result:

1. The MLE exists if, and only if,t (xobserved) ∈ rint(C)

2. If it exists, it is unique. In addition, when it exists, it can be found as the unique solution to

(5) or, equivalently, as (4), the unique local minima of (3).

3. A necessary and sufficient condition for the MLE not to exist is thatt (xobserved) ∈ rbd(C).

This occurs with positive probability.

In practice, the above implies that attempting to numerically maximize the likelihood leads

to unbounded estimates when the observed graph has statistics falling on rbd(C). This typically

means the optimization algorithm does not converge, or otherwise converges to a false maxima.

Simulation studies by Handcock (2000), Snijders (2002); Snijders et al. (2004) show that this is

a common occurrence as many realistic models have a non-negligible probability of falling on

rbd(C).

If t (xobserved) falls in rbd(C) it is still possible that subsets ofθ have MLEs that exist. Let

t (xobserved) = (t (1)(xobserved), t (2)(xobserved)) andθ = (θ (1), θ (2)) be similar partitions oft (xobserved)

andθ.Under mild conditions (Barndorff-Nielsen 1978), ift (1)(xobserved) ∈ rbd(C) andt (2)(xobserved)

is in the relative interior of the convex hull oft (X) : t (1)(X) = t (1)(xobserved) then the MLE of

θ (2) exists and is the unique local minima of the conditional likelihood equation:
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CL(θ; x, ) ≡ log[ Pθ (X = x | ta(X) = ta(xobserved)] = θT tb(x)− κ(θ, ta(xobserved))

x ∈ X : ta(X) = ta(xobserved) (6)

Thus, it may be possible to obtain estimates for certain model parameters despite difficulties

with the overall model. This may provide a fall-back for certain atypical scenarios in which models

fail despite being well-behaved in general (e.g., due to chance realizations of extreme values of

t (xobserved) in small graphs).

3.3 Likelihood-based inference based on MCMC Algorithms

Geyer and Thompson (1992) show how MCMC methods can be used to approximate the likeli-

hood for the random graph model (1). The basic idea is thatc(θ,X) can be thought of as the mean

of exp
[
θT t (X)

]
. One way determine toc(θ,X) is to enumerate all graphs inX. As is well-known,

an alternative is to randomly sample fromX and use the (weighted) mean of the sample as an esti-

mate ofc(θ,X) : Let y(1), . . . , y(M) be a sequence of graphs sampled from the model(X, t, ψ). A

natural Monte Carlo estimate ofc(θ,X) is

cM(θ,X) =
c(ψ,X)

M

M∑
i =1

e(θ−ψ)
T t (y(i ))

and the correspondingMonte Carlo log-likelihood:

MCL(θ; x, ψ) = (θ − ψ)T t (x)+ log

[
M∑

i =1

e(θ−ψ)
T t (y(i ))

]
+ log M

converges almost surely to the (relative) log-likelihoodL(θ; x) − L(ψ; x) = (θ − ψ)T t (x) +

κ(ψ,X)−κ(θ,X). The MLE ofθ can then be approximated by:θ̂MC = argmaxθ∈2MCL(θ; xobserved, ψ),

the Monte Carlo MLE (MC-MLE). Geyer and Thompson (1992) prove that the MC-MLE con-

verges to the true MLE as the number of simulations increases. The procedure also produces

estimates of the asymptotic covariance matrix, the size of the MCMC induced error, and other

related quantities.

The existence and uniqueness of the MC-MLE can be understood in terms of the statistical

exponential family with respect to counting measure on{t (y(1)), . . . , t (y(M))}.

Result: Let CO be the convex hull of{t (y(1)), . . . , t (y(M))}. There are three situations:

1. If t (xobserved) ∈ rint(CO) the MC-MLE exists and is unique. It is found as the unique

maximum of the MCMC likelihood.

2. If t (xobserved) ∈ rint(C) ∩ (rint(CO))c then the MC-MLE does not exist, even though MLE

exists and is unique.
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3. If t (xobserved) 6∈ rint(C) then neither the MC-MLE nor the MLE exists.

This result further clarifies why attempts to calculate MC-MLE estimates for social network

models often fail. If the model used to simulate the graphs is not close enough to produce real-

izations that cover the observed values of the statistics, the MC-MLE will not exist even in cases

where the MLE does. This behavior is quite common (Crouch et al. 1998; Snijders 2002). As

we shall see in Section 5, this effect is magnified by properties of commonly used models that

do not place probability mass broadly enough. Thus, the MC-MLE may not exist for at least two

reasons. First, the MLE itself may not exist (in which case neither does the MC-MLE). Second,

it is difficult to specify parameter values for commonly used models to produce realizations that

cover the observed values of the network statistics – when the importance sample fails to cover

these values, the MC-MLE will not exist. This second problem is complementary to the Monte

Carlo estimation error: small to moderate disparities betweenPψ(X = y) andP
θ̂
(X = y) lead to

inaccurate estimation, with larger disparities causing the complete failure of the algorithm.

4. GEOMETRY OF EXPONENTIALLY PARAMETRIZED RANDOM GRAPH MODELS

The exponentially parametrized random graph models have almost exclusively been analyzed

within the naturalθ−parametrization. In this section we establish the geometry of two alternative

parameterizations of model (1) that are usually superior for social networks.

Consider the mean value parametrization for the model(X, t, θ), µ : 2 → rint(C) defined by

µ(θ) = Eθ [t (X)] (7)

The mapping is strictly increasing in the sense that

(θa − θb)
T (µ(θa)− µ(θb)) ≥ 0 (8)

with equality only if Pθa(X = x) = Pθb(X = x) ∀x. The mapping is also injective in the sense

that

µ(θa) = µ(θb) → Pθa(X = x) = Pθb(X = x) ∀x. (9)

Using(1), µ(θ) can be reexpressed as

µ(θ) =

[
∂κ(θ)

∂θ

]
(θ) (10)

and has gradient

ν(θ) =

[
∂2κ(θ)

∂θT∂θ

]
(θ) (11)

The range ofµ, µ(2), is rint(C) (Barndorff-Nielsen 1978). Taken together, this means that

(7) is an alternative parameterization of(X, t, θ). We refer to it as theµ−parametization.
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Theµ−parametization has many advantages. Chief among these is interpretability. As noted

in Section 2, researchers choose graph statisticst (x) because they have meaning in the substan-

tive context. The parameter corresponding to each graph statistic is just its expected value over

the population of graphs. For many parameters, this population-average interpretation has great

intuitive appeal. Theµ−parameter space is finite and convex, and the points in the space have an

interpretable scale.

A natural measure of the divergence of the model(X, t, µ0) from (X, t, µ) is the Kullback-

Leibler discriminant information:

KL(µ0;µ) =

∑
x∈X

log
[
Pµ,X(X = x)/Pµ0,X(X = x)

]
Pµ,X(X = x) = (θ(µ)−θ(µ0))

Tµ+κ(µ0)−κ(µ)

As
∂KL(µ0;µ)

∂µ0
= ν−1(θ(µ))(µ0 − µ)

∂KL(θ0; θ)

∂θ0
= ν(θ)(θ0 − θ) (12)

we see that small changes on theµ−parametrization may lead to large-scale divergence while

those in theθ−parametrization are bounded. These issues are illustrated in the next sections.

In the case where a sub-set of the statistics are most directly interpretable in terms of their

mean values and others in their natural parametrization we can consider mixed parametizations.

Let (t (1), t (2)) be a partition oft such that the first component is that of the statistics interpretable

in terms of their mean values. Consider similar partitions(θ (1), θ (2)) of θ and(µ(1)(θ), µ(2)(θ))

of µ(θ). Let2(2) be the set of values ofθ (2) for θ varying in2 andC(1) be the convex hull of

{t (1)(x) : x ∈ X}. The mappingη : 2 → 2(2) × rint(C(1)) defined by

η(θ) = (µ(1)(θ), θ (2)) (13)

represents a third parametization of the model(X, t, θ) (Barndorff-Nielsen 1978). The parametriza-

tion has similar properties to the mean value parametrization. In addition it has the important prop-

erty that the componentsµ(1) andθ (2) are variationally independent, that is, the range ofη(θ) is a

product space. We refer to it as theη−parametization.

For many random graph models theη−parametization has the advantages of interpretability

and better inferential properties than the natural or mean value parameterizations.

4.1 Estimation in General Parametizations

Let ξ be one of the three parameterizations of the model(X, t, θ). Let κ(ξ) = log[c(θ(ξ))]

whereθ(ξ) is the inverse mapping ofξ(θ). The log-likelihood function:

L(ξ ; x) ≡ log
[
Pθ(ξ)(X = x)

]
= θ(ξ)T t (x)− κ(ξ) x ∈ X (14)

is continuous inξ and satisfies

∂2L(ξ ; x)

∂ξT∂ξ
=

∂θ

∂ξT
VξT

∂θ

∂ξ
+ (t (x)− Eξ [t (X)]) ·

∂2θ

∂ξT∂ξ
(15)
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whereVξT is the variance oft (X) considered as a function ofξ . In addition, if t ∈ rint(C) the

observed information at the MLÊξ is

−
∂2L(ξ ; x)

∂ξT∂ξ
(ξ̂ ) = I(ξ̂ ) = V

ξ̂
[t (X)]) (16)

whereI(ξ) is the Fisher information. The Fisher information for theθ−parametrization isν(θ) =

Vθ [t (X)] while that of theµ−parametrization isν−1(θ).

The Fisher information of theη−parametrization has additional structure. Based on the iden-

tity:
∂2L(η; x)

∂µ(1)T∂θ (2)
(η) = (t (1)(x)− µ(1)) ·

∂2θ (1)

∂µ(1)T∂θ (2)
(17)

the information is [
[ν−1(θ)]11 0
0 [ν(θ)]22

]
where the diagonal blocks are the corresponding components of the information forµ(1) andθ (2),

respectively. Thus the components of theη−parametrization are orthogonal, and the corresponding

MLEs are asymptotically independent. These two properties enhance the interpretation of the

η−parametrization and simplify inference.

It is possible to enlarge the model (1) to include the distributions corresponding to the faces of

C (Barndorff-Nielsen 1978, p.154-155). In this extended model, the MLE ofµ, µ̂ = t (xobserved),

always exists and is unique. While no direct calculation of the likelihood equation is necessary to

calculate the MLE, measuring the uncertainty of the MLE as an estimate ofµ is as computationally

complex as finding the MLE ofθ.

The MLE ofη can be determined in two stages. The MLE ofµ(1) is clearlyt (1)(xobserved). The

MLE of θ (2) can be found from the conditional likelihood equation (6). If this is estimated based

on an MCMC then in general it will be simpler than an overall MCMC as the proposal function

can be restricted to graphs with the observed value oft (1).

For all three parameterizations, an MCMC or analytic approximation is required to determine

ν(θ̂).

These results provide insight into the failure of the MLE algorithms in the natural parametriza-

tion noted in Section (3.3).

5. MODEL DEGENERACY FOR RANDOM GRAPH MODELS

In this section we consider the relationship between the geometry of the parametrization and

the properties of the model. Two properties of random graph models that have a big impact on

practice aremodel degeneracyandstability. This builds on ideas of Ruelle (1969), Strauss (1986),

Geyer (1999) and Baddeley (2001, Section 4).
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5.1 What makes a useful model for a social network?

The specifics of what makes a useful model for a social network depends on the application.

Here we consider a basic statistical property that any useful model should have. Broadly speaking,

useful stochastic models place a significant proportion of their probability mass on graphs that

have high probability of being produced by the underlying social process. Heuristically, model

degeneracy occurs when the model places disproportionate probability mass on only a few of the

possible graph configurations inX. A common case is where the random graph model(X, t, θ)

places almost all its mass on the empty graph (i.e.,Xi j = 0 ∀i, j and/or the complete graph (i.e.,

Xi j = 1 ∀i, j ). Such models are almost never useful for modeling actual networks, as almost all

realizations from these models will be empty or complete. While it may be true that some social

structuresare nearly always empty or complete this invariance also means that these are rarely

the subject of network analysis. Another complication caused by model degeneracy is that when

such models are used for simulation and MC-likelihood inference, the approximations to the true

model will generally be very poor. Thus, for most applications, we seek(X, t, θ) which are far

from degenerate and we seek to limit our space of viable models accordingly.

Specifically, we say a model(X, t, θ) is near degenerateif µ(θ) is close to the boundary of the

convex hull ofC. Let deg(X) = {x ∈ X : t (x) ∈ rbd(C)} be the set of graph on the boundary

of the convex hull. Based on the geometry of the mean value parametrization this means that the

expected sufficient statistics are close to a boundary of the hull and the model will place much

probability mass on graphs in deg(X). This statement can be quantified in a number of ways:

Result: Let e be a unit vector in IRq and bd(e) = supµ∈rint(C)(e
Tµ).

1. µ(λe) → bd(e)e asλ ↑ ∞.

2. Pλe,X(X ∈ deg(X)) → 1 asλ ↑ ∞.

3. For everyd < bd(e), Pλe,X(eT t (X) ≤ d) → 0 asλ ↑ ∞.

4. Letθ0 ∈ rint(C). Then KL(θ0; λe) → ∞ asλ ↑ ∞.

As µ(θ) approaches the boundary the corresponding model places more and more probability

mass on the graphs that form the corresponding part of the boundary. The limiting model is singular

with respect to models withµ(θ) ∈ rint(C) and places positive probability on the small subset of

graphs in the corresponding face ofC. The last result indicates that near degenerate models diverge

in the Kullback-Leibler sense from models which are not.

In practice, the proportion of the population of graphs in deg(X) is small. Often the models

place the majority of mass on the empty graph, the complete graph or a mixture of the two.

These issues are exacerbated in the natural parametization due to the complexity of the mapping

µ(θ). Typically only a small section of the natural parameter space is mapped to areas of rint(C) far
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from the boundary. As a result it is difficult to specify models in the natural parameter space. The

set of realistic social network models often form one-dimensional curves in the natural parameter

space of models that are surrounded by near degenerate models. We illustrate these issues using

the 2−star model in the next section.

A random graph model isstable if small changes in the parameter values result in small changes

in the probabilistic structure of the model. If this is not the case, then very similar parameter values

can describe very different graph structures. Unstable models often have bad statistical properties

do not represent realistic graphs. Conditions for the stability of a model are related to those for

model degeneracy. The stability of model within the mean value parametrization is geometrically

simpler than that of the natural parametrization: if the model is unstable if it is close to rbd(C).

5.2 The Effect of Model Degeneracy on MCMC Estimation

The effects of model degeneracy are exacerbated because it is closely related to poor properties

of simple MCMC schemes (Geyer 1999). The results of the previous section along with those of

Section 3 clarify why attempts to calculate MC-MLE estimates for social network models often

fail. Parameter values in the near degenerate region can hinder the convergence of common MCMC

algorithms used to simulate and estimate random graph models. This has hindered likelihood-

based inference for random graph models. A common symptom of these difficulties has been

non-convergence of the algorithms (Crouch et al. 1998; Snijders 2002). Specifically, if the MCMC

is based on a near degenerate model then the convex hull of the sampled statistics will be a small

subset of the convex hull of the model. According to the results of Section 3.3, the MC-MLE will

have very high variance and usually will not exist. The reason is that it is very difficult to choose

values of the natural parameter that are far from degenerate and close to the MLE.

Consider the simple MCMC algorithm based on the full-conditional distributions and the ran-

dom proposal of dyads to update. Let

M(ψ) = max
x∈X

|ψTδ(xc
i j )|

whereδ(xc
i j ) is given in (2). Thus there existsx ∈ X with .

logit
[

Pψ,X(Xi j = 1 | Xc
i j = xc

i j )
]

= ±M(ψ)

If M(ψ) is large and the chain transitions to this graph then it will not mix overX very well.

This is true even though the MCMC is geometrically ergodic. However, asµ(ψ) → rbd(C),

M(ψ) → ∞. Hence ifψ is near-degenerate thenM(ψ) will often be large and the will have poor

coverage ofX. A common occurrence with social network models hasM(ψ) determined by the

complete graph, and the MCMC unable to move away from it.
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6. CASE-STUDY OF DEGENERACY OF THE 2−STAR MODEL

In this section we illustrate the ideas in the previous section using a simple model that is com-

monly used as a starting point for social network analysis. It is the instance of the model (1) with

two network statistics being the number of edges and 2−stars in the graph. This is the case of

model (1) withq = 2 statistics

Pθ (X = x) =
exp{θ1E(x)+ θ2S(x)}

c(θ1, θ2)
x ∈ X

E(x) ≡ t1(x) =

∑
i< j

xi j

S(x) ≡ t2(x) =

∑
i< j<k

xi j xik

whereE(x) is the number of edges andS(x) is the number of “2−stars” (i.e., edges sharing a

common node). We shall refer to this as the2-star model. While it only has two parameters it can

represent the full degree distribution of a graph. This model modifies the homogeneous Bernoulli

model to capture a naive form of dependence between pairs measured byS(x). It is an analog of

the Strauss model for a point process (Strauss 1975) or the Ising model for a lattice process.

The natural parameter space of models isθ ∈ 2 ⊆ IR2
; that is, any value ofθ in the plane

corresponds to a valid probability distribution. In this illustration we will consider the case where

there areg = 7 homogeneous actors. For this model there areN = 21 pairs and|X| = 2,097,152

graphs. The degeneracy of this random graph model grows as the number of individuals increase,

but its effects can be seen even in graphs as small as 7 actors.

Figure 1 is a plot of the sufficient statistics for the model. Each circle represents a pair of

sufficient statistics (i.e., numbers of edges and 2−stars). In total there are 144 distinct pairs of

sufficient statistics. The area of each circle represents the number of isometric graphs with that

pair of sufficient statistics. For example, for the pair(10,22) there are 79,170 graphs and for

(10,23) there are 55,230 graphs.

The convex hull of the supportC is plotted. On the boundary ofC there are 22 pairs of

statistics, all of them on the bottom of the hull. These correspond to graphs with the minimum

possible number of 2−stars for the given number of edges. From the earlier results, if the observed

statistics is one of these 22, then the MLE ofθ2 does not exist, and the MLE ofθ1 is the log-odds

of the observed density. If the observed statistic is not one of these then the MLE can be calculated

from (4).

We are less concerned with estimation here, and more concerned with the nature of the proba-

bility mass functions defined by the 2−star model. What do the graphs generated from this model

look like? What are their sufficient statistics? Figure 2 is a plot of some characteristics of the
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realizations of this model for different parameter values. Consider panel (a). It represents a plot of

the parameter space ofθ . The Bernoulli graphs correspond to the horizontal line at zero. Values

in the bottom half-plane correspond to negatively dependent ties. Values in the top half-plane cor-

respond to positively dependent ties. The gray-scale image is the probability of the empty graph

graph for that parameter (i.e.,Pθ (X = 0)). Darker values correspond to higher probability. As

expected, parameter values in the bottom-left quadrant place increasingly high probability on the

empty graph.

Of what import is this? We rarely analyze network data when there are not ties (i.e., the graph is

empty). Thus parameter values that correspond to distributions that say the empty graph is almost

certain are not realistic. This is not to say that models should exclude completely the empty graph,

only that models that place all their mass on the empty graph are not very interesting. Graph models

in the bottom-left quadrant are examples of degenerate models for most empirical applications.

Consider panel (b). This is the equivalent plot for the probability of the complete graph. Pa-

rameter values in the top quadrants place high probability on the complete graph. These models

are degenerate for most purposes. Panels (c)-(h) consider other forms of model degeneracy that

may be unrealistic in many applications. Clearly the designation of model degeneracy depends on

the use to which the model will be put, but the models in these panels are unlikely to be realistic

for most applications.

Figure 3 is the cumulative plot for all the degeneracies in Figure 2. The models in the dark

region place almost all their probability mass on a small number of unrealistic graph configurations.

The vast majority of graphs, including almost all those likely to be of practical interest, have

negligible probability of occurring. The light area corresponds to the set of models that are non-

degenerate. Thus if we are searching for models that represent realistic behavior we must consider

models in this small wedge of the parameter space. Thus even though any value ofθ in IR2

corresponds to a valid probability distribution, only this small subset of models will usually be

“interesting” from a modeling viewpoint.

These figures illustrate that theeffective natural parameter spaces of exponentially parametrized

random graph models are limited. The shape of the non-degenerate region of the parameter space

and especially the uneven shading of the bottom-right quadrant make direct interpretation of the

region difficult.

For the 2−star model the mean-value parametrization is

µ1 ≡ E[E(x)] =

∑
i< j

E[xi j ] = NE[x12]

Hereµ1 is the expected number of edges, andµ1/N is the probability that two actors are tied.

Hence it is a direct and natural measure of network density on an interpretable scale. In addition it
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is bounded between zero andN (or unity in the density form). The other parameter is

µ2 ≡ E[S(x)] =

∑
i< j<k

E[xi j xik] = 3

(
g

3

)
E[x12x13]

Thusµ2 is the expected number of 2−stars, orµ2/(3
(g

3

)
) is the probability that an actor is tied to

randomly chosen other actors. Likeµ1, it is a direct and natural measure of network dependence

on a interpretable scale. These advantages hold true for general models if the network statistics are

directly interpretable.

Panel (a) of Figure 4 is a plot of theµ−parameter space. The total shaded region (i.e., both red

and green) is the parameter space and is identical toC, the convex hull of the sufficient statistics.

The boundary of the space is marked by the sufficient statistics that form the convex hull ofC.

Note that the space is exactly the interior of the hull, that is, the continuous open bounded set.

As this space is just a mapping of theθ−parameter space it must also contain the near degen-

erate graphs. However, they are not apparent. The red corresponds region in the plot corresponds

to parameter values that are within 1 edge unit of the boundary. For example, values close to(0,0)

correspond to probability distributions with close to zero edges and 2−stars (i.e., empty graphs).

Models with parameters close to(21,105) correspond to probability distributions with close to all

edges and all 2−stars (i.e., complete graphs). Models that hug the bottom of the hull have the min-

imum number of 2−stars for the given number of edges. Finally models close to the top diagonal

of the hull correspond to models with the maximum number of 2−stars for the given number of

edges. All of these models are near degenerate in the same sense as the previous section. How-

ever the geometry of theµ−parameter space makes the identification of near degenerate models

clearer. Different definitions of model degeneracy can be applied. The red band here represents

models that expect to have less than one edge, at most one missing edge, or to be within one 2−

star of the extreme number for the given number of edges.

Equation(7) can be used to map non-degenerate models into theθ−parameter space. Panel

(b) of Figure 4 is a plot of the non-degenerate region of theθ−parameter space mapped from

panel (a). The interior of the “stealth-bomber”-like region corresponds to the parameter values

that give non-degenerate models. Parameters outside this region fall in the border region of panel

(a) and hence degenerate models by this definition. The crenelated nature of the region is one

reason that analysis using theθ−parameterization has been difficult, since only models in this

region (or something similar in shape to it) are viable for modeling. The relative simplicity and

interpretability of theµ−parameter space to that in theθ−parameter space is an important benefit.

Of particular note is that small regions of theµ−parameter space are mapped to large, unbounded

regions of theθ−parameter space. Panel (c) is a plot of the non-degenerate region of the natural

parameter space with the location of the realizable MLEs superimposed. Most of the values for

real data will exhibit positive dependence and occur in the top-left quadrant. In particular, many
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will occur close to the narrow peninsula at the top (the “nose” of the stealth bomber). If a search

routine does not take this geometry into account it will quickly yield issues of convergence.

Finally, panel (b) of Figure 4 can be overlayed with Figure 3. As can be seen the two regions

are very similar. Thus this parametization provides the theoretical basis of the model degeneracy

plots.

The behavior of the full conditional MCMC can be explained for the 2−star model. For this

model M(θ) = max{|θ |, θ1 + 2(g − 2)θ2} and this corresponds to either the complete or empty

graph. Hence ifθ1 >> 0 the MCMC will have poor coverage ofX. For example, consider the case

whereg = 7 andθ = (4.5,−18.4)). For this modelµ(θ) ≈ (3,0) andM(θ) = 4.5. An MCMC

chain will approach(3,0) ∈ rbd(C) and stay there 98.9% of the time with 1.1% at(2,0) ∈ rbd(C);

the sample has essentially two-states.

If θ2 >> 0 the MCMC will typically have poor coverage ofX. Note that the magnitude of

the second term inM(θ) increases linearly with the number of nodes in the graph. For example,

consider in the case whereg = 7 andθ = (−3.43,0.683). For this modelµ(θ) ≈ (9,40) and

M(θ) = max{3.43,3.40). The distribution places 50% of its mass on graphs with 2 or fewer

edges and 36% on graphs with at least 19 edges. It also mixes very slowly between these groups,

as is shown, in Figure 5. This plots the traces and marginal densities of the samples of edges

and 2−stars from this model and based on 100,000 iterations of the full-conditional MCMC. The

algorithm mixes very slowly between the set of nearly empty graphs and the nearly complete

graphs. Alternative MCMC algorithms, such as a Swendsen-Wang variant (Swendsen and Wang

1987) would help in this situation, but not in general (e.g., the previous example).

The 2−star model is unstable in the natural parametrization as small changes in the value ofθ2

when it is positive can greatly affect the model. For example, ifθ2 = 0.67 in the previous model

µ(θ) ≈ (4.4,17.1) and the distribution places almost all its mass on the mode of empty graphs.

7. DISCUSSION

This paper addresses the question of what is a “good” model for a network and in doing so it

helps to resolve the problem of lack of convergence when estimation or simulating using MCMC.

These results also indicate that mean value and mixed parameterizations are a natural way to rep-

resent exponential parametrized random graph models. While they appear to suffer from more

indirect specification of the likelihood, this is overshadowed by their interpretability, ease of esti-

mation, and the stability and functionality of their parameter space.

One implication of these results is that theeffectiveparameter space of exponentially parame-

terized random graph models is a small, bounded subset of the theoretical parameter space. Lim-

iting inferences to this viable region in the parameter space can be accomplished in a Bayesian

framework, via the use of parameter priors which concentrate most or all of the prior probability
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mass on viable models. The Bayesian framework for inference promises to be very powerful for

network modeling. In addition to reducing model degeneracy, it facilitates the propagation of pa-

rameter uncertainty into the final inference, and allows the incorporation of expert prior knowledge

when it exists. While questions remain regarding the optimal selection of parameter priors, we ex-

pect that Bayesian inference for general random graph models will contribute greatly to the tools

available to network researchers in the years ahead.

In the context of spatial Markov random fields, Besag (1986) has argued that the maximum

pseudolikelihood estimator reflects the “local” (spatial) neighborhood information, as compared

to the maximum likelihood estimator which reflects the “global” neighborhood information. Our

results, and the experience of others, suggest that commonly used random graph models are more

global than local in structure, and that even those with nodal Markov dependence are global. Hence

the current approach to pseudolikelihood estimation will have poor statistical properties. This

same global nature of the existing models contributes to their model degeneracy and instability

problems. These issues are not resolved by alternative forms of estimation but represent defects in

the models themselves – at least, to the extent that they are useful for modeling realistic graphs.

Recent advances in model specification, cognizant of these issues, hold much promise (Nowicki

and Snijders 2001; Pattison and Robins 2002; Hoff et al. 2002; Schweinberger and Snijders 2003;

Snijders et al. 2004).

APPENDIX: TECHNICAL DETAILS

In this appendix we provide support for the results given in the paper. The model (1) is a finite

statistical exponential family with respect to counting measure onX.We assume that the dimension

of X is q so that the family is minimal and the parameter space is{θ : c(θ,X) < ∞} = IRq so that

it is also full. The results follow from the general theory of exponential families. Here we give a

guide to those results.

Existence and uniqueness of the MPLE and MLE

The derivation of the result in Section 3.1 follows from the equivalence of the MPLE algorithm to

a logistic regression onδ(xc
i j . This logistic model forms an exponential family. The result is then

derivable from Barndorff-Nielsen (1978, Section 9.3). The equation of result 1 is derivable from

the convex hull formed byδ(xc
i j ), x ∈ X. It can also be derived from Albert and Anderson (1984)

and Santner and Duffy (1986). Our appeal to exponential family theory provides a direct alternative

derivation to that given by those authors. The result in Section 3.2 follows from Barndorff-Nielsen

(1978, Corollary 9.6).

Likelihood-based inference based on MCMC Algorithms
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The sample{t (y(1)), . . . , t (y(M))} form a statistical exponential family with respect to counting

measure. The result then follows from Barndorff-Nielsen (1978, Corollary 9.6).

What makes a useful model for a social network?

The first three statements are versions of Barndorff-Nielsen (1978, Section 9.8, (viii)). The last

follows from the definition of the Kullback-Leibler discriminant information and the third result.
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Figure 1: Enumeration of sufficient statistics for graphs with 7 nodes. The circles are centered on
the possible values and the area of the circle is proportional to the number of graphs with that value
of the sufficient statistic. There are a total of 2,097,152 graphs.
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Figure 2: Degeneracy probability plots for graphs with 7 actors.
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Figure 3: Cumulative Degeneracy Probabilities for graphs with 7 actors.
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Figure 4: Regions of the mean value and natural parameter spaces.
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Figure 5: MCMC diagnostic plots for the model withθ = (−3.43,0.683).
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