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Abstract

Epidemic thresholds in network models of heterogeneous populations characterized by highly
right-skewed contact distributions can be very small. When the population is above the thresh-
old, an epidemic is inevitable and conventional control measures to reduce the transmissibility of
a pathogen will fail to eradicate it. We consider a two-sex network model for a sexually transmit-
ted disease which assumes random mixing conditional on the degree distribution. We calculate
interval estimates for the epidemic threshold for stochastic process models in three human popu-
lations based on representative surveys of sexual behavior (Uganda, Sweden, USA). For Uganda
and Sweden, the epidemic threshold is greater than zero with high confidence. For the USA, the
interval includes zero. We discuss the implications of these findings along with the limitations of
epidemic models which assume random mixing.



1 Introduction

Epidemic models exhibit critical behavior. When a population is below some critical threshold,
a major outbreak of an infectious disease (i.e., an epidemic) can not occur. Classically, epidemic
thresholds were seen in terms of a critical number of susceptible hosts: a population with too
few susceptible could not support an epidemic (Bailey, 1975). More modern treatments have
focused on the threshold parameterR0, the basic reproduction number (Heesterbeek, 2002).R0

is defined as the expected number of secondary cases produced by a single (typical) index case in
a completely susceptible population (Diekmann et al., 1990). For a homogeneous, one-sex model
of a directly-transmitted pathogen and one disease state, this expected number of cases is given
simply by the product of the transmissibility of the agent (β), the average contact rate between
susceptible and infected members of the population (c̄), and the duration of infectiousness, usually
defined by the reciprocal of the recovery rate (δ = ν−1):

R(U )
0 = βc̄δ, (1)

where the superscript(U ) indicates thatR0 applies to a homogeneous (uniform) population.
This somewhat schematic definition ofR0 enjoys the great advantage of easy interpretation.

Public health campaigns designed to eliminate STIs focus on one of three strategies suggested by
(1): (a) reduce transmissibility (β) through vaccines, barrier contraceptive use, or, in the case of
non-curable viral infections, therapeutics (e.g., HAART), (b) reduce the contact rate (c̄) through ed-
ucation, or (c) increase the recovery rate (ν) through treatment of curable STIs. Some interventions
combine strategies. For example, contact-tracing combines contact-reducing and recovery-rate in-
creasing interventions (Janssen et al., 2001; Golden, 2002).

The definition ofR0 in heterogeneous populations is somewhat more complex, though by dis-
cretizing “generations” of infections, its calculation is a simple extension of the homogeneous
case (Diekmann et al., 1990; Diekmann and Heesterbeek, 2000). For many sexually transmitted
infections (STIs) with one disease state, heterogeneity is incorporated into models by way of a
mixing matrix in which the population is stratified by sexual activity level and the matrix gives the
activity-specific probability of interaction (Gupta et al., 1989; Anderson and Garnett, 2000).

For a population characterized by heterogeneous sexual activity, and and in which there is
random mixing linearly proportional to activity levels, Anderson et al. (1986) demonstrate thatR0

becomes:

R(H)
0 = R(U )

0 (1 + CV2), (2)

whereCV is the coefficient of variation of sexual activity in the population (i.e., the standard devi-
ation divided by the mean of the number of sexual partners). Clearly, populations characterized by
large variance – and particularly large variance relative to the mean – will have higher reproduction
numbers and thus, lower epidemic thresholds.

The great majority of epidemic models that followed from the pioneering work of Anderson
et al. (1986) are one-sex, either explicitly because they consider homosexual transmission dy-
namics (e.g., Gupta et al., 1989) or implicitly because they do not model the interaction of the
sexes(Newman, 2002b).

Men’s and women’s sexual behavior differs systematically throughout the world as a function
of cultural norms, gender-power relations, and social institutions regulating individual behavior. In
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Africa, home to the world’s largest fraction of HIV sero-positive people, HIV is sexually transmit-
ted primarily by contacts between men and women. Two-sex models admit the possibility of an
epidemic threshold of zero, even if the behavior of either of the sexes alone would yield a non-zero
threshold (Newman, 2002b).

A second, related concern is that the partnership distributions’ variance, while finite, could
still be high enough to impede the effectiveness of transmissibility-based interventions. Since, for
example, no vaccine is completely effective (Blower et al., 2001), a non-zero epidemic threshold
could still pose a practical barrier to disease eradication if it were low enough.

Pastor-Satorras and Vespignani (2002) note that epidemic thresholds for “bounded scale-free”
networks are higher than for homogeneous networks. While this result is not particularly novel in
the context of mathematical epidemiology (cf. Hethcote and Yorke, 1984; Anderson et al., 1986;
Gupta et al., 1989), it reinforces the need to examine quantitatively the effect of large degrees of
behavioral heterogeneity on the epidemic thresholds of STIs.

Furthermore, while the Anderson et al. (1986) result for heterogeneousR0 helps provide the
intuition for why partnership distributions with power-law behavior can yield epidemics without
critical behavior (see also May and Lloyd, 2001), this derivation of the epidemic threshold (i.e., at
R(H)

0 > 1) is based on a compartmental model and not on an explicit network epidemic model.
In this paper we consider models where individuals are represented as nodes in a network

and edges represent heterosexual sexual contact. Disease spreads only through diffusion over the
network of sexual contacts. We assume that the network is a realization of a stochastic process
characterized by random mixing between individuals conditional on the individual activity levels
(i.e., the nodal degrees) (Newman, 2002b). We focus on models for the population degree distribu-
tions in which the variance can greatly exceed the mean. One important class are those that exhibit
power-law behavior, often loosely referred to as “scale-free” distributions (Liljeros et al., 2001;
Dezs̋o and Barab́asi, 2002). We estimate thresholds for two-sex epidemics that model the contact
structure underlying transmission. These thresholds represent for explicitly networked models the
analogue ofR(H)

0 as given in (2) for example.
In Section 2 we develop models for the sexual contact degree distribution. In Section 3, we de-

rive the epidemic thresholds for these models within the random graph model of Newman (2002b).
The degree distribution models are estimated for three populations (Section 3.1) and the epidemic
thresholds are estimated (Section 3.2). In Section 6, we discuss the epidemiological relevance of
these results, and approaches to overcome the limitations of the models.

2 Models for Degree Distributions

Let P(K = k) be the probability mass function of the number of partners within a well defined
period that a randomly chosen person in a population has had. We sayP(K = k) haspower-law
behaviorwith scaling exponentρ > 1 if there exist constantsc1, c2, and M such that 0< c1 ≤

P(K = k)kρ
≤ c2 < ∞ for k > M . Empirical distributions of the number of sex partners,

both lifetime and over the past year, show a pronounced right-skew, with the great majority of
people having few partners and some having many (Laumann et al., 1994; Lewin, 1996; Hubert
et al., 1998; Aral, 1999; Youm and Laumann, 2002). This observation has led a number of authors
to suggest that sexual partnership distributions have power law behavior (Liljeros et al., 2001,
2003; Schneeberger et al., 2004). These authors do not consider the wide range of right-skewed
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distributions as plausible alternatives.
For ρ ≤ 3, the variance of a distribution with power-law behavior is infinite. The Anderson

et al. (1986) approximation forR0 therefore suggests that populations characterized by partnership
distributions with power-law behavior andρ ≤ 3 will lack epidemic thresholds, since with infinite
varianceR(H)

0 > 1 for arbitrarily small transmissibility or duration of infectiousness. Note that
an actual population will always have finite variance, and hence the extrapolation of mathematical
models for the degree distributions that have infinite variance requires a careful assessment of the
quality of the approximation provided by the model (Jones and Handcock, 2003; Handcock and
Jones, 2004).

We focus on two competing stochastic mechanisms for the formation of sexual contact net-
works. The first is a variation on a preferential attachment process, such as those advocated by
several recent authors (Barabási and Albert, 1999; Pastor-Satorras and Vespignani, 2001; Liljeros
et al., 2001). The second process is a non-homogeneous Poisson model for partnership formation.
The limiting distributions of both these mechanisms can be characterized by long tails. They have
the additional benefit that they have the same number of parameters, facilitating comparison.

2.1 Preferential Attachment Model

A mechanism that has been suggested for the formation of power-law sexual networks is preferen-
tial attachment (Albert and Barabási, 2000; Liljeros et al., 2001; Dezső and Barab́asi, 2002). This
and related stochastic processes have a long history in applied statistics (Simon, 1955; Kendall,
1961; Irwin, 1963). Consider a population ofr people in in which (1) there is a constant prob-
ability p that ther + 1st partnership in the population will be initiated from a randomly chosen
person to a previously sexually inactive person, and (2) otherwise the probability that ther + 1st
partnership will be to a person with exactlyk partners is proportional tok f (k|r ), where f (k|r ) is
the frequency of nodes with exactlyk connections out of ther total links in the population. The
limiting degree distribution of those connected by this process asr → ∞ is known as the Waring
distribution (Irwin, 1963). The Yule distribution discussed by Simon (1955) and used by Jones and
Handcock (2003) to model degree distributions is a special case of the Waring distribution with
p = (ρ − 2)/(ρ − 1).

The probability mass function (PMF) of the Waring distribution (Johnson et al., 1992) is:

P(K = k|K > 0) =
(ρ − 1)0(ρ + φ)

0(φ + 1)
·

0(k + φ)

0(k + φ + ρ)
, φ > −1, (3)

where0(·) is the Gamma function and the mixing parameterφ is related top via:

p =
ρ − 2

ρ + φ − 1
. (4)

The Waring distribution has power-law behavior with scaling exponentρ. The mean and vari-
ance of the Waring distribution are:

E(K |K > 0) =
1

p

V(K |K > 0) =
(1 − p) (ρ − 1)

p2 (ρ − 3)
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Thus, the expected value of the Waring distribution is simply the inverse of the probability of
forming a tie to an individual lacking existing ties. Both the Waring and the Yule distributions
have been re-discovered, apparently without awareness of their historical antecedents, by Levene
et al. (2002) and Dorogovtsev et al. (2000) respectively in the context of modeling growth of the
Internet.

2.2 Non-Homogeneous Poisson Model

A reasonable alternative model to the preferential attachment mechanism is that people form part-
nerships according to a Poisson process. One possible behavioral mechanism that underlies this
model is that people acquire new partners at a constant rate,λ. Clearly, the assumption that all
people in the population are characterized by the same rate of partner acquisition is unreasonable.
To include heterogeneity, we can modelλ as a random draw from some population distribution
P(λ).

Here we modelP(λ) as a Gamma distribution with meanµ and standard deviationσ. Letλi +1
be the expected number of partners for personi in the sub-population of those with at least one
partner. The model can then be written:

P(K = k|K > 0, λ) =
e−λλk−1

0(k)
(5)

P(λi = λ) =
e−λ/η1(λ/η1)

η2−1

η10(η2)
λ > 0 (6)

whereη = (η1, η2) = (σ 2/µ, µ2/σ 2). The conditional distribution ofK given K > 0 is there-
fore negative binomial distribution shifted tok = 1, 2, . . . . One interpretation of this distribution
is that people are following a search for partners that satisfy a certain criterion and continue to
acquire partners until they haveη2 such partners. Partners satisfy the criterion independently and
each with probabilitypc. This probability defines the scale parameter of the underlying hetero-
geneity distribution (η1 = (1 − pc)/pc). The mean and variance of the negative binomial in terms
of the gamma mean-standard deviation parameterization areE(K |K > 0) = µ + µ2/σ 2 and
V(K |K > 0) = (σ +µ/σ)2. If the population heterogeneity distributionP(λ) is right-skewed the
partner distributionK will also be right-skewed. Thus this model is one plausible alternative to the
preferential attachment model that can have heavy tails, but does not have power-law behavior. As
we shall see, this leads to different epidemic potentials for the two models even when their ability
to describe the observed partnership distributions is similar.

3 Epidemic Models on Random Graphs

The impact of the degree distribution on the spread of STDs on an arbitrarily-defined contact struc-
ture has been studied by Newman (2002b), who gives both one-sex and two-sex results. Suppose
that the degree distribution of a population has PMFPθ (K = k) whereθ is the (possibly vector)
parameter. For example, for the Waring modelθ = (ρ, p) the scaling exponent and probability of
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recruiting a novice parameter. The critical transmissibility of an infectious agent is defined by a
quantity we call theconcentration index, C(θ), given by:

C(θ) =
Eθ (K )

Eθ (K 2) − Eθ (K )
=

Eθ (K |K > 0)

Eθ (K 2|K > 0) − Eθ (K |K > 0)
, (7)

whereEθ (K ) is the expectation of the random variableK with respect to the PMFPθ (K = k).

Higher values ofC(θ) ≥ 0 indicate distributions that are more concentrated and a value of zero
indicates a distribution with infinite variance. We note that Newman (2002b) refers to this quantity
as the critical transmissibility (Tc), which it clearly is for the one-sex case. The concentration
index notation,C(θ), makes specification of the epidemic threshold in the two-sex case much more
compact than Newman’s original notation, which was in terms of probability generating functions
of the nodes and edges of the transmission graph.

As an application, suppose that the degree distribution of a one-sex population follows the
Waring model (3) with scaling exponentρ and recruitment probabilityp. Then

C(ρ, p) =
E(K )

E(K 2) − E(K )
=

{
p(ρ−3)

2(1−p)(ρ−2)
ρ > 3

0 ρ ≤ 3
(8)

For the negative binomial model, the concentration index is most parsimoniously represented
using the underlying gamma heterogeneity parameterη:

C(η) =
E(K )

E(K 2) − E(K )
=

1 + η1

η2(1 − η1)2 − η2
1

(9)

Defining the concentration index as in (7), it is simple to explore epidemic thresholds in two-
sex, heterosexual transmission models. Suppose that the degree distribution of the men and women
in a population have PMFs with parametersθm andθ f respectively. The model in Newman (2002b)
assumes a form of random mixing with respect to degree that satisfies the constraints on the degree
distributions. We define theepidemic thresholdof the population to be:

T(θm, θ f ) = C(θm)C(θ f ) (10)

Under this model, and assuming that the disease has mutually positive transmissibilities be-
tween men and women, Newman shows that an epidemic will occur with probability approaching
1 as the number of partnerships approaches infinity if eitherC(θm) or C(θ f ) is zero (i.e., the vari-
ance of either of the distributions is infinite). In this case there is said to be no epidemic threshold
(T(θm, θ f ) = 0). Based on his results the probability of an epidemic approaches 0 as the number
of partnerships approaches infinity if

0 < Tm f T f m ≤ T(θm, θ f ) (11)

where thetransmissibility Tf m is the average integrated probability of transmission per partnership
from females to males. The transmissibilityTm f is defined reciprocally. In particular, this means
that independently of the transmissibility the probability of an epidemic approaches 0 as the num-
ber of partnerships approaches infinity ifT(θm, θ f ) > 1. The range of values of the population
distributions that allow for a transition to an epidemic following random infection is defined by

0 < T(θm, θ f ) < Tm f T f m. (12)
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In this range, the likelihood that an epidemic occurs can be reduced by interventions that de-
crease the transmissibilities of the pathogen. Examples of such interventions include vaccination,
barrier contraceptive use, or therapeutics (e.g., anti-retroviral therapy).

For degree distributions with power-law behavior, such as the Waring, the probability of an
epidemic approaches 1 as the number of partnerships approaches infinity if eitherρm andρ f is
less than or equal to 3. The probability of an epidemic approaches 0 as the number of partnerships
approaches infinity if(ρm − 3)(ρ f − 3) > 4(φm + 1)(φ f + 1) regardless of the transmissibilities.
The epidemic potential in the intermediate range will depend on the transmissibilities(Tm f , T f m)

and the scaling parameters(θm, θ f ).

3.1 Estimating The Degree Distribution

Much of the empirical work on characterizing the degree distribution of samples from a variety of
physical, biological, and social networks is based on regression concepts, in which the scaling pa-
rameter is estimated from the regression of the apparently linear region of the plot of the logarithm
of the survival functionP(K ≥ k) against log(k). OLS regression is not an appropriate inferential
tool for this problem as the data violate a variety of assumptions linear regression (Jones and Hand-
cock, 2003). Furthermore, the apparent linearity of the tail can be a spurious visual illusion owing
to the cumulative nature of the log-survival plot. In order to move away from ad hoc curve fits,
Handcock and Jones (2004) advocate the specification of stochastic process models for network
formation. Such stochastic models are amenable to empirical verification and allow estimation of
model parameters using Maximum Likelihood.

We estimated the Waring and negative binomial parameters for three populations: (1) Rakai
District, Uganda (Wawer, 1992), (2) Sweden (Lewin, 1996), (3) USA (Laumann et al., 1994). De-
scriptions of these datasets are given in (Handcock and Jones, 2004). We adapt the model to allow
for the possibility that the tail behavior (i.e.,k > 1) of the degree distribution may differ funda-
mentally from the majority of the observations for whichk = 0 or 1 (May and Lloyd, 2001). We
generalized the models to allow separate parameters to fit the probabilities of lower degrees. The
parametric model is fit only to valuesK ≥ kmin > 0, and we use likelihood-based model selection
procedures (e.g., Burnham and Anderson, 2002) to choose the best fitting model. Specifically, we
used a corrected Akaike Information Criterion (AICC)(Simonoff and Tsai, 1999). Full details of
the fitting procedure can be found elsewhere (Jones and Handcock, 2003; Handcock and Jones,
2004).

3.2 Confidence Intervals for Epidemic Thresholds

Uncertainty in the network model parameters,θ will produce uncertainty in the concentration index
and, hence, the epidemic threshold of the population. To assess this uncertainty quantitatively, we
constructed 95% bootstrap confidence intervals forC(θ) (Efron and Tibshirani, 1993). For each
population ofn individuals, the observed values of individual partner counts were re-sampled with
replacement to produce 5000 samples of sizen andC(θ) for each replicate sample was calculated
to yield the intervals.
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Table 1: Parameter estimates for the Waring model.AICc is the corrected Akaike Information Cri-
terion for the best fitting Waring model,kmin is the lower cutoff degree,ρ is the scaling exponent,
p is the second parameter,p is the probability of forming a tie to an individual lacking partners,
andC(θ) is the concentration index for the parameter values.

Country sex AICc kmin ρ φ p C(θ)

Uganda women 1061.3 1 8.68 -0.56 0.94 7.64
men 1576.2 2 4.58 -0.46 0.83 0.97

Sweden women 2143.9 2 4.45 1.53 0.49 0.75
men 3025.0 2 6.53 1.87 0.61 1.56

USA women 3208.7 1 3.11 -0.68 0.77 0.17
men 3247.8 2 4.47 2.05 0.45 0.24

Table 2: Parameter estimates for the negative binomial model.AIC is the Akaike Information
Criterion for the best fitting negative binomial model,kmin is the lower cutoff degree,te is the
expected stopping time of the negative binomial,pc is the probability a person satisfies the cri-
terion,µ mean of the underlying gamma distribution,σ is the standard deviation of the gamma
distribution, andC(θ) is the concentration index for the parameter values. To aid interpretation of
the model we have included the alternative parametrization:te is the expected stopping time of the
negative binomial, andpc is the probability a person satisfies the criterion.

Country sex AICc kmin te pc µ σ C(θ)

Uganda women 1058.3 2 0.27 0.19 0.22 0.96 6.60
men 1574.4 4 3.58 0.52 1.72 1.26 0.82

Sweden women 2142.9 1 0.38 0.36 0.24 0.65 2.31
men 3024.3 1 0.66 0.25 0.49 1.23 1.21

USA women 3210.0 4 2.86 0.15 2.42 3.68 1.88
men 3204.3 1 0.78 0.26 0.58 1.30 0.93

4 Results

4.1 Degree Models

The results for the Waring model MLE fits are presented in Table 1. For both men’s and women’s
networks from all three populationsρ > 3, indicating finite variance. Nonetheless, the parameter
values for the USA yield quite low values ofC(θ).

The results for the negative binomial model MLE fits are presented in Table 2. For all samples
but the American women, the negative binomial model fits better than the Waring, as indicated by
the AICc values. Figure 1 plots the inferred distribution of the Poisson parameterλ for the three
populations. As expected, all three populations show a great deal of right-skew. The heterogeneity
in propensity to have additional partners is very similar for men and women and for the Western
countries. In Uganda the women are much less likely to form additional partners than the men.
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Figure 1: Gamma heterogeneity in the rate of partner acquisition in the three populations. Women
are solid blue lines, men are dashed red lines.

4.2 Confidence Intervals on Epidemic Thresholds

We estimated 95% confidence intervals of the epidemic threshold (equation 12) for each popula-
tion using each of the four combinations of underlying degree models (e.g., male Waring, female
Waring, etc.) The confidence intervals for the Waring and negative binomial models are compared
in figure 2. The intervals for the negative binomial model tend to be higher than those of the Waring
for the Sweden and the USA. In Uganda the epidemic threshold is much higher and more uncer-
tain than the two countries in the developed world. Figure 3 plots the confidence intervals for the
best fitting models. For all populations but the USA, all models yielded bounds on the epidemic
threshold which did not overlap with zero. In the USA, the confidence interval for the joint-Waring
model included zero. (The test of the hypothesis that the threshold is zero again the alternative that
it is positive hasp-value = 0.69). The USA epidemic threshold confidence intervals for different
kmin values are presented in Figure 4. For all higher cutoffs the intervals do not include zero.

5 Empirical Concentration Indices and Epidemic Thresholds

Gray et al. (2001) estimate the probability of HIV transmission per coital act for the same popula-
tion represented in our sample from the Rakai District, Uganda. To calculate a maximally conser-
vative estimate, we can use the upper quintile of their estimate per act (γ = 0.0015), multiplied by
both the mean number of coital acts reported per month, and the number of months over which the
local network data were collected (i.e., 12). This yields an estimate ofTm f = T f m = 0.162. For
an epidemic to occur with any probability under this model it is required that

T(θm, θ f ) > Tm f T f m = 0.026244,

or the mean concentration index be
√

0.026244= 0.162. It is clear that this is not consistent
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with the Rakai data where the estimated values of the epidemic thresholds areT(θm, θ f ) = 7.18
for the Waring model andT(θm, θ f ) = 5.41 for the negative binomial model. Rakai is home
to a mature AIDS epidemic. The current estimate of HIV/AIDS prevalence in Rakai is 16%, a
generalized epidemic by any definition. If the random mixing model is roughly correct, then for
the Gray et al. (2001) estimate of the transmissibility of HIV-1 in Uganda, an epidemic would
not be possible. This disjunction between the epidemiology in Rakai and the model predictions is
clearly problematic and will be taken up in the discussion.

For Sweden, the MLEs for the Waring model lead to the condition

0 < Tm f T f m < 0.18

to ensure an epidemic does not occur. Thus transmissibility would need to be very high for an
epidemic to occur (it would need to be at least 2.5 times higher than that observed in Uganda).
Thus this model correctly predicts that there is not a general epidemic in Sweden.

For the United States, the MLEs for the scaling parameters of the Waring model areρm = 3.03
andρ f = 3.84. Substituting these values into (11) and (8) leads to the condition

0 < Tm f T f m < 0.22

for an epidemic not to occur. For an epidemic to occur the transmissibility needs to be nearly three
times the value of that observed by Gray et al. (2001).

6 Discussion

Capitalizing on the graph-theoretic epidemic formalism of Newman (2002b), we are able to calcu-
late confidence bounds for epidemic thresholds in three populations. Our results indicate that there
is very high probability that two of the populations, Uganda and Sweden, are characterized by
non-zero epidemic thresholds. Confidence intervals for the epidemic threshold in the USA include
the zero value (i.e., the epidemic threshold may not be positive). The best fitting model suggests
that there could be no epidemic threshold in the United States. However, the models close to it in
terms of model fit all indicate confidence intervals for the critical transmissibility does not include
zero.

The model predicts no epidemic in Uganda, despite Rakai having one of the most mature
HIV/AIDS epidemics in the world. Four points may help to explain this apparent paradox. First,
Rakai is characterized by a declining epidemic and our finding that the concentration index ex-
ceeds critical transmissibility may simply reflect the contracting epidemic. This seems somewhat
unlikely however, since the HIV/AIDS prevalence is still 16%, higher than most other regions
in the world. A second possibility which is closely related to the first is that there is potential
censoring of highest-activity people due to premature mortality. The inclusion of more highly ac-
tive individuals would have made the contact pattern less concentrated, making an epidemic more
likely. A third intriguing possibility is that epidemiological assumptions underlying the HIV/AIDS
epidemic in Africa are incorrect. Specifically, some recent research has suggested that the role of
heterosexual transmission of HIV in Africa has been greatly over-estimated and that a large frac-
tion of HIV is attributable to contaminated needles (Brewer et al., 2003; Gisselquist and Potterat,
2003). Finally, the epidemic model may simply fail to capture the actual risk structure of Rakai.
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While Newman’s two-sex random graph epidemic model is a great advance in realistically
representing the contact structure of pathogens transmitted by intimate contact, it still contains a
major weakness which ultimately limits its utility. Specifically, it assumes random mixing condi-
tional on degree. For compartmental epidemic models structured by activity class, departures from
random mixing can either slow (if mixing is disassortative) or accelerate (if mixing is assortative)
epidemic growth (Morris, 1991; Marschner, 1992; Garnett and Anderson, 1996). In either case,
models with heterogeneous activity will yield lower equilibrium prevalence (Anderson and May,
1991). This point is made clear by the final-size equation given by Anderson and May (1991, 272)
under heterogeneity:

I = 1 − (1 + 2)−1/CV2
, (13)

where I is the overall fraction of the host population ever infected,2 is an integrated measure
of the force of infection over the course of the epidemic, andCV is the coefficient of variation
of sexual activity in the population - see (2). Clearly, asCV → ∞, I → 0, a point recently
re-emphasized by May and Lloyd (2001).

While the effects of heterogeneity on the classical compartmental models for STIs are well
understood, the implications of heterogeneity in the graph-theoretic epidemic models is less ob-
vious. Through analogy to critical phenomena in percolation theory, the intuition appears to be
that degree-based non-random interactions will produce lower epidemic thresholds and larger final
sizes of epidemics.

Newman (2002a) notes that correlations in the connectivity of nodes in a network can reduce
epidemic thresholds. The extent of assortative mixing by degree in sexual networks is an open
empirical question in epidemiology. While Newman (2002a) notes the implications of such corre-
lations for epidemic processes on social networks, the social network data he analyzes come from
various professional collaboration networks (e.g., scientific co-authoring, business board mem-
bership, movie co-starring) and not from epidemiologically relevant network samples. There is no
reason to believe that the structure of a sexual contact network resembles the collaboration network
of mathematics papers.

Empirical work in epidemiology indicates that some networks show assortativeness by degree,
some do not (Stoner et al., 2000), while some show it weakly (Garnett et al., 1996; Barlow et al.,
1997). Degree-based correlations based on standard local network sampling procedures (Mor-
ris, 1997) are subject to considerable error. Respondents typically have accurate knowledge of
their partners’ behavior when they believe their partners have other partners (i.e., high specificity).
However, respondents appear to be much worse judges of their partners’ behavior when they report
that their partners do not have other partners (i.e., low sensitivity) (Stoner et al., 2003). Unbiased
estimates of assortative mixing by degree are further complicated by the fact that when sampling
networks, a random sample of graph nodes does not yield a random sample of the graph’s edges,
and for STIs, the clear unit of epidemiological analysis is the partnership.

The answer to the question of degree-based correlations depends on the availability of quality
data on the structure of the network that is not present in most sexual history surveys. Such surveys
typically only ask questions about the number of sex partners. However the information necessary
for evaluating degree-based correlations is available from link-tracing designs and related adaptive
designs (Goodman, 1961; Thompson and Seber, 1996). These observations emphasize the need
for partner enrollment studies (e.g., Johnson et al., 2003) to facilitate improved inference on the
contact structures which support STI epidemics.
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In contrast with the recent network research suggesting that properties of sexual networks may
facilitate STI spread and persistence – effectively lowering epidemic thresholds – the spatially-
motivated work of Sander et al. (2002) suggests that social networks can actually impede the
spread of an STI. Whether or not the spatial lattice metaphor applies in any way to human intimate
contacts, the point thatlocalization effects, by partitioning sexual networks, could slow the spread
of an STI (Keeling, 1999). The localization effects could be, literally, geographic or they could be
social. For example, Laumann et al. (1994) report effective structural zeros in the NHSLS mixing-
by-race matrix. African American women are exceptionally unlikely to have white male partners,
making direct transmission between these compartments rare.

A large body of research suggests that human sexual relations, like other forms of social inter-
action, are anything but random (e.g., Morris, 1991; Laumann et al., 1994; Youm and Laumann,
2002; McPherson et al., 2001). Modeling epidemics on contact structures which reflect, for ex-
ample, differential homophily by age and race, and low levels of transitivity is a challenging task.
Nonetheless, strong statements regarding optimal control and eradication strategies must be predi-
cated on the best models for the system in question.
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Figure 2: Comparison of the 95% bootstrap confidence intervals for the epidemic threshold given
by the negative binomial model (solid lines) and the Waring model (dashed lines) for each popula-
tion.
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Figure 3: 95% bootstrap confidence intervals for the epidemic threshold given by the best fitting
model in each population.
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Figure 4: Confidence bounds on the epidemic threshold of the Waring model for the USA.
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