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Abstract

Network data arise in a wide variety of applications. Although descriptive statistics for networks
abound in the literature, the science of fitting statistical models to complex network data is still in its
infancy. The models considered in this article are based on exponential families; therefore, we refer
to them as exponential random graph models (ERGMs). Although ERGMs are easy to postulate,
maximum likelihood estimation of parameters in these models is very difficult. In this article, we
first review the method of maximum likelihood estimation using Markov chain Monte Carlo in the
context of fitting linear ERGMs. We then extend this methodology to the situation where the model
comes from a curved exponential family. The curved exponential family methodology is applied
to new specifications of ERGMs, proposed by Snijders et al. (2004), having non-linear parameters
to represent structural properties of networks such as transitivity and heterogeneity of degrees. We
review the difficult topic of implementing likelihood ratio tests for these models, then apply all
these model-fitting and testing techniques to the estimation of linear and non-linear parameters for
a collaboration network between partners in a New England law firm.

KEY WORDS: exponential random graph model; maximum likelihood estimation;
Markov chain Monte Carlo; p—star model.



1. INTRODUCTION

A network is a way to represent “relational data” — i.e., data whose properties cannot be re-
duced to the attributes of the individuals involved — in the form of a mathematical graph. For
the purposes of this article, a network consists of a set of nodes and a set of edges, where an edge
is an ordered or unordered pair of nodes. In typical applications, the nodes in a graph represent
individuals, and the edges represent a specified relationship between individuals. Nodes can also
be used to represent larger social units such as groups, families, or organizations; objects such as
physical resources, servers, or locations; or abstract entities such as concepts, texts, tasks, or ran-
dom variables. Networks have been applied to a wide variety of situations, including the structure
of social networks, the dynamics of epidemics, the interconnectedness of the World Wide Web,
and long-distance telephone calling patterns.

This article concerns inference in specific probabilistic models for networks. Throughout, we
will represent a generic random network by the ma¥fpann x n matrix wheren is the number of
nodes. Eaclyjj can equal zero or one, with one indicating the presence of an edge betamg
and zero indicating the absence of such an edge. More complicated networks may be represented
if Yjj is allowed to take on arbitrary values, in which case the edges may be considered to have
weights; however, we avoid such complications here. We disallow the possibility of self-edges,
soY;; = O for alli. Furthermore, for the sake of simplicity we develop arguments using the
assumption thaY is undirected — that isYjj = Yj;i for all i andj so only the lower triangle of
Y is relevant. However, none of the theory we present depends essentially on the undirectedness
assumption.

The models we consider for the random behavioY oély on ap-vectorZ (Y) of statistics and
a parameter vector € RP. The canonical exponential family model is

P(Y =y) = expin'Z(y) — v (1)}, (1)

where
exply ()} = Y exp(n'Z(x)) 2

is the familiar normalizing constant associated with an exponential family of distributions (Barndorff-
Nielsen 1978; Lehmann, 1983). The sum in (2) is taken over the whole sample space, which
presents a very important problem in most applications: A sample space consisting of all possible
undirected graphs on nodes contains e*(g) log 2} elements, an astronomically large number
even for moderately sizadof, say, 20. Thus, for most applications it is impossible even to evalu-
ate the likelihood function for a particulgt let alone maximize it. We consider ways around this
problem in Section 2.



The range of network statistics that might be included indtw) vector is vast — see Wasser-
man and Faust (1994) for the most comprehensive treatment of these statistics — though we will
consider only a few in this article. We allow the vecHiy) to include covariate information about
nodes or edges in the graph in addition to information derived directly from the maitself.
Thus,Z(y) should be viewed as a function not onlyyfbut also potentially of certaiexogenous
covariates, by which we mean covariates on nodes or pairs of nodes whose values are not affected
by the presence or absence of edges. For example, if each node is a gé€ggamjght include
the total number of edges between individuals of the same gender, which is a function of both the
graphy and the exogenous nodal covariate gender. For notational simplicity, we prefer to allow
the dependence & on exogenous covariates to be implicit rather than explicitly indicated by the
notation.

There has been a lot of work on models of the form (1), to which we refer as exponential
random graph models or ERGMs for short. (We avoid the lengthier EFRGM, for “exponential
family random graph models,” both for the sake of brevity and because we consider some models
in this article that should technically be callegrvedexponential families.) Holland and Leinhardt
(1981) appear to be the first to propose a specific case of model (1) in the literature. Their model,
which they called thgy; model, resulted in each dyad — by which we mean each pair of nodes
— having edges independently of every other dyad. Based on developments in spatial statistics
(Besag 1974), Frank and Strauss (1986) generalized to the case in which dyads exhibit a kind of
Markovian dependence: Two dyads are dependent, conditional on the rest of the graph, only when
they share a node. Frank (1991) mentioned the application of model (1) to social networks in its
full generality. This was pursued in depth by Wasserman and Pattison (1996). In honor of Holland
and Leinhardt’sp; model, they referred to model (1) g% (p—star), a name that has been widely
applied to ERGMs in the social networks literature.

Inference for this class of models was considered in the seminal paper by Geyer and Thompson
(1992), building on the methods of Frank and Strauss (1986) and the above cited papers. Unitil
recently, inference for social networks models has relied on maximum pseudolikelihood estimation
(Besag 1974; Frank and Strauss, 1986; Strauss and lkeda, 1990; Geyer and Thompson 1992).
Geyer and Thompson (1992) proposed a stochastic algorithm to approximate maximum likelihood
estimates for model (1) among other models; this Markov chain Monte Carlo (MCMC) approach
forms the basis of the method described in this article. The development of these methods for
social network data has been considered by Dalimstand Dahmsirm (1993), Corander et al.
(1998), Crouch et al. (1998), Snijders (2002), and Handcock (2002).

In this article, we begin with a summary in Section 2 of the basic idea behind the MCMC max-
imum likelihood approach. Many of the estimation ideas in Section 3 are more or less implicit in
the articles of Geyer and Thompson (1992) and Geyer (1994), though their application to fitting



curved exponential family models is new. Section 4 describes several particular ERGMs due to
Snijders et al. (2004) and demonstrates how to fit them. Section 5 discusses an approach to the
difficult issue of implementing a likelihood ratio test in this context. Finally, Section 6 ties all of
the previous sections together, demonstrating the use of these methods to fit an ERGM to a collab-
oration network among lawyers, a problem considered by Snijders et al. (2004). Whereas Snijders
et al. (2004) estimated some of the parameters in their model but assumed others were fixed and
known, we apply the curved exponential family machinery to estimating all of the parameters.

2. MARKOV CHAIN MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION

In Section 1, we pointed out the difficulty of evaluatigdyn) in equation (2) due to the fact
that it involves a sum with an extremely large number of terms. Here, we discuss a way around this
problem in preparation for a discussion in Section 3 about estimating the parameters via maximum
likelihood. The method uses Markov chain Monte Carlo to approximate the likelihood function,
and then maximizes this approximation.

Let n and 3° denote two distinct values of the canonical parameter in model (1). We are
interested in calculating exp (1) — v (%)} as a function ofj, wherey? is fixed and known. Since

9tZ(x)}
. oy _ 2Otz (eXp{(ﬂ ) )
exp{y () — v (n°)} Z expl(n — 1200} | = o
= Epo[expln— 192N} 3)
we may approximate exp (1) — v (3°)} by the sample mean
1 m
=D _expln —n7)'Z(Y), 4)
i=1
whereYq, ..., Ym is a sample of random graphs from the distribution defineg®Buch a sample

may be obtained using Markov chain Monte Carlo.

Let £(n) be the log-likelihood for model (1) based on observing a single realizgtjgyof
Y. Lettingr (g, no)d:efﬁ(n) — £(»°) denote the logarithm of the likelihood ratio, we apply the ideas
above and approximatey, n°) by

. 1o
fm. 1% = (11— 1%)'Z(Yobs — log [r—n > expl(n — n°)tzm>}} . (5)
i=1
The strong convergence Bf(, 1°) tor (1, n°) asm — oo is guaranteed by a Markov chain ver-

sion of the strong law of large numbers (Meyn and Tweedie, 1993). Thus, for a fixed sample size
m, maximization of (5, %) as a function of) gives an approximation to the maximum likelihood



estimatory. This procedure, which may be termed Markov chain Monte Carlo maximum likeli-
hood estimation (MCMCMLE for those who like acronyms), originates in Geyer and Thompson
(1992).

Note that¢(y) andr (5, n°) are unchanged & (y) is replaced by (y) — a for some constant
vectora. For example, we might take = Z(Yops), in Which caseZ(y) represents thehangein
the vector of statistics for the graptrelative to the observed graphps This make< (Yops) = O,
which simplifies the definition ofm(y, %) in equation (5). Alternatively, we might take =
% Zim:l Z(Y;), which has the effect of centering tA€Y; ) at zero, leading to more stable numerical
calculations.

In some applications, we may want to estimate not merely the likelihood ratio but the actual
value of the log-likelihood itself. This may be accomplished by noting #i@f = —logM,
whereM is the size of the sample space. For instance, if the sample space includes all undirected
graphs om nodes, then log! = (5) log 2. By combiningt(0) with estimates of () — £(3°) and
2(0) — £(3°), we obtain

Eoy Z fm(, 1% = fm(0, 1) — log M. (6)

It remains to describe how to generate a Markov chain whose stationary distribution is given by
equation (1). The simplest Markov chain proceeds by choosing (by some method, either stochastic
or deterministic) a dyad, j) and then deciding whether to st = 1 orYj; = 0 at the next step
of the chain. One way to do this is using Gibbs sampling, whereby the new va¥fjeissampled
from the conditional distribution ofj; conditional on the rest of the graph. Denote “the rest of the
graph” byYfJ?. Theny;; |Yi‘j5 = yicj has a Bernoulli distribution, with odds given by

P(Yij = 1S = y5)
P(Yij = 015 =¥

= exp(n" AZ(y))ij}, )

whereA(Z(y))ij denotes the difference betwegiy) wheny;; is set to 1 and (y) whenyjj is

set to 0. A simple variant to the Gibbs sampler (which is an instance of a Metropolis-Hastings
algorithm) is a pure Metropolis algorithm in which the proposal is always to change the value of
¥ij - This proposal is accepted with probability rfiin }, where

P =1-ylY =5 {exp[ntA(Z(y))ij} if yij = 0;
PN =wlYS =y lexe{—n' Ay} iy =1

The vectorA(Z(y))ij used by these MCMC schemes is often much easier to calculate directly than
as the difference of two separate valueZ 0f). For instance, if one of the components of Zg)

vector is the total number of edges in the graph, then the corresponding compone@t(gf);;

is always equal to 1.



The Metropolis scheme is usually preferred over the Gibbs scheme because it results in a
greater probability of changing the valueypf, a property thought to produce better-mixing chains.
However, it is well known that these simple MCMC schemes often fail for various reasons to
produce well-mixed chains (Snijders 2002; Handcock 2002, 2003; Snijders et al. 2004). The
choice of the model class and more sophisticated MCMC schemes are a topic of ongoing research.
We return to the former in Section 4.

3. ESTIMATION FOR CURVED EXPONENTIAL FAMILIES

Suppose thay € RP, the canonical parameter in equation (1), is a function of a lower-
dimensional paramet#& € RY, g < p. If the function is linear, say = A for somep x q
matrix A, then@ is simply the canonical exponential family parameter for the reduced set of statis-
tics A'Z(y). However, if the function mapping to 5 is nonlinear, then in general the situation is
more complicated. The family of distributions

P(Y =y) = expin(0)'Z(y) — ¥[n()1}, 6 € RY

is called acurved exponential familiyn the terminology of Efron (1975).
The maximum likelihood estimater satisfies the likelihood equation

NP o B
VEB) = V1(0) [Z(Yobs) En(()) Z(Y)] =0, (8)

whereVy(0) is the p x q matrix of partial derivatives ofy with respect tod. We may search
for a solution to equation (8) using an iterative technique such as Newton-Raphson; however, the
exponential family form of the model makes the Fisher information matrix

18) = Vu(6)'[Vary g, Z(Y)IV1(6) (9)

easier to calculate than the Hessian matrix of second derivatives required for Newton-Raphson.
For more about equations (8) and (9), see Efron (1978). The information matrix (9) is the basis for
the method of Fisher scoring, which is analogous to Newton-Raphson exceptltt®tis used

in place of the Hessian matrix. Thus,6if® denotes the estimate 6fat thekth iteration, Fisher
scoring sets

-1
gk — g [| (0<k>)] ved®). (10)

The biggest obstacle to overcome in implementing the scoring algorithm (10) is the fact that
En(0) Z((Y) and Vat;ﬂa) Z(Y) are difficult to calculate directly for ERGMs. One approach to es-
timating these quantities is to use one of the MCMC methods described in Section 2 to generate
a sampleyy, ..., Yy, from the distribution defined by the parameter vaue¢hen use the sample
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mean and covariance df(Y1), ..., Z(Ym) to approximate Lf’(o) Z(Y) and Val;7(0) Z(Y). How-

ever, such an approach could prove computationally expensive in an optimization routine, since a
new sample would have to be generated each time the vatuetefnged. An alternative is to gen-
erate a single sample, based on a fixed parameter @3luet Y1, . . ., Ym denote this sample, and
suppose tha®¥ is the value of the parameter vector at Ktk iteration of an iterative algorithm.

Then the approximate Fisher scoring method is implemented as

n -1
gk — g {| <o<k>>} V()" [zobs— > wi(k)zi} : (11)
i

whereZ psandZ; denoteZ (yops) andZ(Y;), respectively;

o _ __ explln®") —n@°1'Zi}
L Y expln(8%) — (091125}

and

m m m t
[0y = V@™ {Z wi(k)ZiZf _ <Z wi<k)zi> <Z wi<k)zi> } V0. (12)

i=1 i=1 i=1
Equations (11) and (12) are derived by first writing(ﬁ) Z(Y) and Va;mg) Z(Y) in terms of ex-
pectations involving only %(00) as in equation (3), then substituting sample means like expression
(4) for population means.

The two ideas above for stochastic optimization algorithms, one in which we generate a new
sample with every iteration and one in which we generate only a single sample, each have their
drawbacks. As pointed out above, the first idea is expensive computationally. However, the second
may lead to an estimatfeg, that is not very close to (where there is no ambiguity, we writg, and
r instead of (7 (0), n(¥°%)] andr [(8), n(8°)], respectively). A compromise is represented by the
following scheme, which is similar to the approach used by Geyer and Thompson (1992):

1. Select an initial valug®.
2. Generate an MCMC sampgY1), ..., Z(Ym) using the paramet@ro.
3. lterate algorithm (11) until convergence, obtaining a maxinmfzef .

4. If Varyc i of equation (13) is too large compared@t(o,(é)), say+/Varyc fm > bf(n(é))
for some constartt < 0, then se®® = @ and return to step 2.

5. Taked to be the MCMCMLE.



Sinced is a maximizer offm by step 3, the logic of the algorithm is that we takeo be the
MCMCMLE as long as we're convinced th&y, is close to the true.

Let Uj denote exfin(®) — 9(89)1'Z;} fori = 1,...,mandU = 13" ™ U;. The variance
usedinstep4is

K
.1 def 1 .
Vatue [fm] = —=5 D (m— kD, (13)
k=—K
whereyx = y_k denotes the sample ldgautocovariance of the sequende, Uo, .. ., which we
assume to be stationary. Equation (13) is obtained from the Taylor approximati@ybpgr

(a—b)/b, whence

- Var(U)
Var[log(U)] ~ EQP

The value ofK in equation (13) is chosen large enough so that th&lagtocovariance is approx-
imately zero fork| > K. If the U; are approximately uncorrelated (for example, if the Markov
chain is sampled only at very large intervals), expression (13) reductgs}itbiz/(ml])z] —1/m.

After the algorithm has converged, the question of obtaining standard errors remains. There
are two interesting aspects of the error: The MCMC error, which is the error in approximating
the true MLE,#, by the MCMCMLE, 8; and the usual error inherent in using the MBERo
approximate reality. For the latter, we rely on standard asymptotic results and use the estimated
Fisher information matrix (12) to obtain an estimgitéd)]~* of the covariance matrix.

For the former error, incurred by approximatiﬁgyé, we obtain a separate MCMC covariance
matrix. Geyer (1994) gives mild regularity conditions under Wmﬂﬁ(é —0)is asymptotically
normal, conditional o. The asymptotic covariance matrix ¢fm( — 9) forms the basis of our
MCMC covariance matrix.

A first-order Taylor expansion gives

Jm@ — ) ~ — [vzfm@)]_l [VmVin®)]. (14)

(Note that we writef,(9) instead offm[7(8), n(8°)] in order to simplify notation.) Suppose
that graphsYi, Yo, ... arise from a (stationary) Markov chain defined® In expression (14),
mvrm(é) converges in distribution am — oo to ag-variate normal distribution with meah
and covariance matrix

2
0° > . .
[Cc((é)) } S CoWa(®), Wy @)1, (15)

k=—00

wherec(o)défexp{lp[n(a)]} Is the normalizing constant of equation (2) and

Wi (0)Z(Z (Yobs) — Z(Y)} exp{[n(8) —n@)1'Z(Y) | (16)
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We do not know the value @fin expression (15); therefore, we approximate i#byJsing a sam-
ple mean as in equation (4) to approximate the re@?)/c(8), expression (15) is approximately

m 2 K
v £ % {; expl[n(8°) — ﬂ(é)]tZ(Yi)}i| k:Z_K i
whereéy, = £_, is the sample lag-autocovariance of the sequensg (9), Wo(8), . . ..
As we remarked earlier, the Hessian maWi%'m(9) of equation (14) is difficult to calculate.
Therefore, we make one final substitution and use instead the estimated Fisher information matrix
(), which yields

1ra-11-rnr-~1-1
= [| (0)] Y, [I (0)] (17)
as our estimated MCMC covariance matrix éor

4. ALTERNATING K-STARS AND ALTERNATING K-TRIANGLES

We illustrate the methods discussed in Sections 2 and 3 by applying them to a class of ERGMs
proposed by Snijders et al. (2004). To begin with, we define graph stai¥igs, ..., Dn_1(Y),
known as thalegree distributiorof y, andPy(y), ..., Ph_2(y), known as theshared partner dis-
tribution of y. The degree distribution statistics are well-known in the networks literature, whereas
the shared partner distribution statistics appear to be novel.

Foragiveni, 1 <i <n—1, Dj(y) is defined to be the number of nodesyinvhose degree
— the number of edges incident to the node — equal®r instanceP,_1(y) = n wheny is the
complete graph an®q(y) = n wheny is the empty graph. Note th&l, ..., D,_1 satisfy the
linear constrainDg + - - - + Dp_1 = n.

Foragiveni, 1 <i <n-— 2, B(y) is defined to be the number of dyads k) — where we
assumej < k since the graph is assumed undirected — such jtlatdk are neighbors of each
other and they share exactlyeighbors in common. (“Neighbors” are simply nodes connected by
an edge.) Unlike th®; statistics, the? statistics do not satisfy a linear constraint; however, note
thatPy + - - - + Ph_2 equals the total number of edges in the graph.

Snijders et al. (2004) base some of their ERGMs on graph statistics that may be derived from
the D; and P Let S(y), 1 < k < n — 1, denote the number éfstars in the graply. A k-star
consists of a node together with a sekadf its neighbors. Like the degree statistids thek-star
statistics are well-known in the networks literature. Since a node with degsdbe center o(L)
k-stars,

n-1 ,.
S(y) =) (L) Di(y) fork > 2. (18)
i=1

8



Fork = 1, ak-star is simply an edge, and the number of edges is

def

n-1
1 +=.

E(y) = Sl(y)=§§ iDi(y). (19)
i=1

In addition to the well-knowrk-star statistics, Snijders et al. (2004) also introduce a new set
of statistics they calk-triangles. They usdk(y), 1 < k < n — 2, to denote the number &t
triangles in the graply. A k-triangle consists df triangles that share a common edge. Thus, if the
endpoints of a particular edge share exactheighbors in common, then that edge is the base of
exactly(li() k-triangles. The relationship between ttriangle statisticSk and the shared partner
statisticsP, is very similar to the relationship between thstar statistics and the degree statistics
expressed in equation (18):

n-2 ,.

=3 (L) R(y) fork =2 (20)

i=1
Fork = 1, ak-triangle is simply a triangle, so

n—-2

1 .
Tiy) =3 ) iPi(y). (21)
i=1

2
. —

3/4\

Figure 1. For this undirected, five-node graph, the degree distribybgn. .., Dy) is given by

(0, 1, 1, 3, 0) and the shared partner distributioR, . . ., P3) is given by(1, 4, 1, 0). The edges

might represent, say, some social relationship between individuals, and the node shapes might
signify some exogenous categorical covariate such as gender.

To make these concepts concrete, consider the simple undirected graph depicted in Figure 1.
There are three 3-stars, centered at nodes 2, 3, and 4, and each of these acc@nis?n(m‘ the
ten 2-stars. There are two 1-triangles (i.e., two triangles), and since these two triangles share an
edge there is also one 2-triangle. The degree distribution and the shared partner distribution, given
in the caption of Figure 1, may be used to verify equations (18), (19), (20), and (21) along with the
fact thatE(y) = Zi”;oz P (y). These relationships may be combined to yield

n—1 n—2
1 <=x.
Po(y) = > E iDi(y) — E P (y). (22)
i=1 i=1

9



Since bothDg and Py may be expressed as linear combinations of the diheand P, statistics,
the vectorZ(y) of ERGM (1) based on all degree and shared partner statistics shoul@gieitd
Po:

Z(y) = [D1(y), ..., Dn_1(y), Pi(y), ..., Pa_2]' . (23)

WhenZ (y) of equation (23) is used in model (1) with an unconstrained R>"~3, the model
class is subject to well-known issues of degeneracy (Snijders 2002; Handcock 2002, 2003; Snijders
et al. 2004). One type of model degeneracy occurs when the model places most of the probability
mass on only a few of the possible graph configurations. The fact that nondegenerate values of
n form only a small section of the natural parameter space (Handcock 2003) reduces the value of
this model class for describing realistic phenomena. Another problem is the nonexistence of an
MLE: Whenever the observed graph statistics fall on the convex hull of the sample space of graph
statistics, then the MLE does not exist (Barndorff-Nielsen 1978, Handcock 2003). If ti&full
vector of equation (23) is used, this problem is virtually guaranteed to occur, since typically at least
one element oEZ (y) is zero for any realistic network.

To address these problems, we consider constraints on the natural parameter space. In doing
so, we hope to limit our attention to subsets of the full parameter space that result in more realistic
social network models. Furthermore, the constraints reduce the dimension of the sample space of
statistics and make it more probable that an MLE will exist. One way to implement constraints in
this case was recommended by Snijders et al. (2004), who introduced an altekastiamgstatis-
tic and an alternatingg-triangle statistic (in addition, they introduced an alternating independent
two-paths statistic that we do not discuss here). In reality, these “statistics” aren’t quite statistics
because they are based on parameters; however, Snijders et al. (2004) assume that these param-
eters are fixed and known. In this article, we relax this restriction and estimate these additional
parameters.

The alternatingk-star and alternatink-triangle “statistics” of Snijders et al. (2004) are defined
as

ux(Y) = SZ(y) — @ 4+ .4 (_1)n S;\—nl_(ZY)

)/(y) y +---+( ) —yn 2’

respectively, wheré andy are additional parameters. Snijders et al. (2004) consider an ERGM
that includes statistick (the number of edges),, andv,,:

P(Y =y) o expl01E(y) + O2u,(y) + 63v,, (Y)}. (24)

10



Because we wish both and y to be positive, we reparameterize, lettibg = logi and
05 = logy. We may express the canonical parameterf equation (1) in terms ofq, ..., 05
by replacingSc and Ty by the expressions in equations (18), (19), (20), and (21): The binomial
theorem yields

n—-1 .
u(y: 0 =us(y) = %y {(1 —e ™) —14 ie“g“} Di (y) (25)
i=1
and
def 2 i
v(y: 09 Zv, () =Y {1- (1-e)' | Ry, (26)

Equations (25) and (26) reveal that the coefficient®oand P, are roughly in geometric sequence.
For this reason, we refer th andfs as the scale parameters of the geometrically weighted degree
distribution and geometrically weighted shared partner distribution, respectively. The function
n(0) relating the canonical parametgto the paramete(®s, .. ., 5) of model (24) is required by
equations such as (8) and (9); it is summarized by

O1i + 0oie% — 96294 + 9241 —e ) ifl <i<n-—1;
m:{l-i-z €74 + 06774 ( ) <I =< 27)

036’ [1— (1 — e %)!] ifn<i<2n-3.

Model (24) subsumes a number of simpler models. Wihesa: 63 = 0, the resulting model
P(Y = y) x expl01E(y)} is the simplistic Bernoulli graph (also known as an &d=enyi graph)
in which each edge occurs independently with probabdfty (1 + €’1). When6s = 64 = 0,
equation (27) reduces tq = i(f1 + 62) — 6 for 1 < i < n — 1, which givesP(Y = y) «
exp{(01 + 62) E(y) 4+ 62Do(y)}. This model contains a “Bernoulli” term and one additional term
that governs the propensity for a node to remain unconnected to the rest of the graph. Similarly,
whené, = 65 = 0, the model reduces tB(Y = y) o exp{(61 + 63)E(y) — 63Po(y)}, which
contains an additional term that governs how likely neighboring nodes are to resist having any
shared neighbors. It is important to note thadif= 0 (or 63 = 0), there is an identifiability
problem because in that case the valué dor 6s) is arbitrary. In practical terms, this means that
we should not attempt to interpret the valuegior 65) unless the hypothesis = 0 (or63 = 0)
can be rejected.

5. LIKELIHOOD RATIO TESTING

Since Zm[y (@), 7(8%)]is an estimate of the likelihood ratio statistid#(9), 5(8°)] = 2¢[5(6)]—
20[(8°)] for testing the null hypothesié = 6°, it might seem that likelihood ratio testing is
straightforward in this framework. Unfortunately, this is not quite the case: The approxima-
tion 2 m[n(), n(0°)] ~ 2r[y(@), n(#°)] becomes worse ab gets farther frond°. To estimate

11



r [n(é), n(()o)] accurately necessitates methods to try to lessen the impact of the MCMC error. We
do not make any claims here about the distributionrgf@), n(8°)1; we concern ourselves in this
section only with how best to approximate it using MCMC.

The problem reduces to the problem of estimating the ratio of normalizing consténts(6°),
which is a problem that has received quite a bit of attention in the statistics literature in the past
decade. Indeed, in presenting some of the history of this problem, Gelman and Meng (1998) point
out that it had been studied by physicists before it came to the notice of statisticians, and quite a
bit of reinventing the wheel was done by the statistics community. The basic ig@ghcsampling
(Gelman and Meng, 1998) is as follows. Define a smooth mapping0, 1] — RY such that
9(0) = 0% andd (1) = 6. Then

d
o | g 09pIYIWI} = ¢ 33 2 P01 = (28)

where

def

pylo) = explln@1'Z(y) — vn®)]) (29)

is the probability mass function. Combining equations (28) and (29) gives

d d
GV meWn =Eg, {@{nw(u)]}taw} ,

which may be integrated to give

~ 1 d d
w[n<0>]—w[n(0°>]=on<u> JoOWYZ(Y) du=E {0 WIZ(Y).  (30)
0 u du

The last expectation in equation (30) is taken with respect to the joint distributibhafd Y,
whereU is uniform (0,1) andy |U is distributed according té(U).

Equation (30) suggests thefty(8)] — £[n(0°)] = v [(@)] — v [n(©°)] could be estimated by
drawing a sampléU1, Y1), ..., (Uk, Yk) from the joint distribution ofJ andY, then calculating
the sample average

K

1

< § :[VO(Ui)]{Vn[o(Ui)]}Z(Yi),
i=1

whereVeé (u) is the 1x q vector of derivatives of (u) with respect tal. We may allow theJ; to be
sampled from some density on (0,1), $py), other than uniform; each summand in the sample
mean above should then be divideddpyJ;). However, the functiom(u) may be absorbed into
the path ma (u), so no generality is lost by assuming thhais uniformly distributed.

On the other hand, it is not hard to generalize the argument leading to equation (30) to allow
for the possibility that) has finite support of0, 1]. In fact,U need not even be random: Suppose
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that0=up < u; < ... <uy = 1laregivenandforeach 0 < j < J, we draw a random sample
Uj1. ..., Ujk, from the distribution defined b§(u;). The new estimator cfn(8)] — ¢[5(0°)] is

J Kj
1
2.2 i IVOUIDHVAIBUHIZ(Yo). (31)
j=ti=1 !
This idea is a simple form of a technique call@ttlge samplindy Meng and Wong (1996). In the
implementation of bridge sampling carried out in Section 6, the path betéfeandé is simply
the linear ma@ (u) = (1 — u)6° + ud.

6. EXAMPLE: COLLABORATION WITHIN A LAW FIRM

As an application of these ideas, we consider the collaborative working relations between 36
partners in a New England law firm. The sociometric relationship is one of many considered by
Lazega (2001), Lazega and Pattison (1999) and Snijders et al. (2004) (whom we follow). Specifi-
cally, a tie is said to exist between two partners if, and only if, both indicate that they collaborate
with the other. As noted in Snijders et al. (2004), the degrees of the nodes range from 0 to 16,
with an average of 6.4. The data include covariates collected on each partner. Here we consider
seniority (rank number of entry into the firm), gender, office (there were three offices in different
cities), and practice (there are two possible values, litigation=0 and corporate law=1).

Our objective is to explain the observed structural pattern of collaborative ties as a function
of network statistics, both exogenous and endogenous. The purely endogenous statistics (i.e.,
those that are true functions of the graph ma¥f)xwe consider are the number of edges and the
alternatingk-triangle statisticu(y; ) of section 4. We have not included the alternatiagtar
statisticu(y; 0), both to simplify the presentation and because our results and those of Snijders et
al. (2004) indicate that including that statistic does not appreciably alter the fit of the model.

The statistics involving exogenous data that we consider are all of the form

Zyy = Y yifeaXxp (32)
l<i<j=<n

for some functionf of the nodal covariate vectox§ andXj. In expression (32)y; is the indicator
of an edge between nodesand j, so f (X, Xj) may be thought of as simply an entry in the
change statistic vectax(Z(y));; of equation (7). Following Snijders et al. (2004), we first consider
the “main effects” of both seniority and practice, for whi€liX;, Xj) = seniority + seniorityj
and f (Xi, Xj) = practice + practicg, respectively. We also consider the “similarity effects”
of practice, gender, and office. The similarity effect for, say, practice defirg¥s, Xj) to be
| {practicg = practicg }. Settingd> = 64 = 0 and adding the covariates, model (24) becomes

P(Y =y) ox explé1E(y) + f3v(y; 65) + BT Z(y)}, (33)
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whereZ(y) is the 5-dimensional vector of graph statistics containing the two main effects (seniority
and practice) and three similarity effects (practice, gender, and office) described above. Essentially,
this model allows us to estimate the effects of the covariates on collaboration while controlling for
the network density (as measured Byy)) and a structural transitivity effect (as measured by
v(Y; 0s)).

Here we briefly discuss some aspects of implementing the inferential procedures given in Sec-
tions 2 and 3. To monitor the statistical properties of the MCMC algorithm, we ude paekage
coda. Figure 2 depicts the trace and density plots for a run of sample size 240,000 where only
every 1000th step of the Markov chain is sampled (and 50,000 burnin steps were performed). Each
row corresponds to a statistic in the model. The values are measured as deviations from the ob-
served value of the statistic. The left column has the trace plots of the sample and the right column
has the density plots. Visually the sampler appears to be mixing and the densities are centered about
the observed statistics. This visual impression is supported by numerical diagnostics (Raftery and
Lewis 1996, Gelman 1996), which indicate that the 240,000 values are more than sufficient. The
initial value of@® was the maximum pseudolikelihood estimate. (The pseudolikelihood function is
the “likelihood” obtained by considering all edggs to be independent, with probabilities given
by equation (7); thus, the maximum pseudolikelihood estimate may be obtained by logistic regres-
sion.) For the application in this article, only two recalculation®%fs described in Section 3
were necessary.

Table 1 reports the estimates for two models. Model 1 fixes the valagaiflog(3) = 1.10,
the value chosen by Snijders et al. (2004). WitHixed the model is a regular (i.e., non-curved)
exponential family. These values replicate those in Snijders et al. (2004), Table 1, Model 2. For
compatibility with that paper, we have calculated the estimates conditional on the total number of
ties. This conditioning, in which the number of edges is held constant at 115, removes the edges
statistic from the model. The unconditional estimates are essentially identical, indicating that the
density of collaboration is approximately ancillary to the other statistics.

The B coefficients can be interpreted as conditional log-odds ratios (Snijders et al. (2004)).
There is also a relative risk interpretation that is often simpler. For examples£xp the relative
risk of collaboration between two partners from the same practice compared to two partners from
different practices with the same values of the other covariates and structural effects. The probabil-
ities involved are conditional on these other covariates and structural effects. The interpretation for
non-binary and multiple covariates is similar: €g8p) is the relative risk of collaboration between
two partners compared to two partners with vector of covariates differiny @nd with the same
values of the structural effects).

The standard errors of Table 1 are obtained fromitimeatrix of equation (12), evaluated at
6 (the MCMC standard errors obtained from equation (17) are much smaller; if they weren't, a
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Model 1 Model 2

Parameter est. s.e. est. s.e.
Alternatingk-triangles, ¢3) 0.612 0.091 0.878 0.279
Rate of transitivity ¢s) 1.099 0.814 0.196

Seniority main effect§;)  0.024 0.006 0.023 0.006
Practice main effectf) 0.352 0.113 0.390 0.117

Same practiceds) 0.708 0.194 0.757 0.194
Same gendersy) 0.621 0.257 0.688 0.248
Same office gs) 1.151 0.195 1.123 0.194

Table 1: MCMC parameter estimates for the collaboration network. The edge par@mbser
been eliminated from model (33) by conditioning.

larger sample would have been taken). The usual assessments of significance are based on the
approximation of the distributions of thteratios by standard Gaussian distributions. To assess

the accuracy of this approximation, we also applied MCM®alue tests (Besag and Clifford

1989; Besag 2000). For example, consider evaluating the statistical significance of the main effect
of seniority. We use the MCMC procedure to simulate seniority statistics from the model, only
allowing steps in the Markov chain that keep all the other statistics fixed, andBwith 0. This
produces a null distribution for the seniority statistic, from whiclp-avalue for the observed
seniority statistic may be obtained. Using this procedure we were able to validate the Gaussian
approximation to theé-ratios. Thus the-ratios can be used as an informal guide, even though the
MCMC p-values are to be preferred for formal testing.

Model 2 fits the curved exponential family model estima#iggThe interpretation of the other
parameters is similar to Model 1: Collaboration is strongly enhanced by seniority and by working
in the same office, and slightly less by having the same practice or gender. Collaboration is also
enhanced by practicing corporate law, but at a lower level. The large positive valegard 05
indicate the presence of complex transitive structure that enhances collaboration beyond the effect
that would be expected based on the individual and pairwise partner attributes alone. The scale
parameteps controls the nature of this transitivity: Larger valuesggfcorrespond to increased
weight on the higher numbers of shared partners, whereas small positive values correspond to very
localized transitive effects (recall the interpretation of the ¢ase: 65 = 0 following equation
(27)).

It is of interest to test if the value of the scaling paramétgis statistically significantly dif-
ferent from that specified in Snijders et al. (2004). To do this we can conduct likelihood ratio tests
using bridge sampling as given in Section 5 with= 20 andK; = 200,000, j =0, ..., J,and a
sampling interval of 1,000. Table 2 provides the deviance values for a number of models.

The p—values in Table 2 are calculated by the MCMC procedure given above; further expla-
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Model Residual Deviance Deviance Residual d.p—value

NULL 598.78 - — -
Covariates only 501.80 96.98 5 0.000
Model 1 457.65 44.15 1 0.000
Model 2 456.21 1.44 1 0.176

Table 2: Deviances for the collaboration network among lawyers.

nation of and justification for this procedure are given by Besag and Clifford (1989) and Besag
(2000). The usuaptl2 approximation gives @—value for comparing Model 2 to Model 1 ofZB1.

These results indicate that the covariates substantially improve the model fit, as does the in-
clusion of the transitivity term (Model 1). Allowing the scale of the transitivity to be estimated
does not improve the fit significantly from the value specified in Snijders et al. (2004), which is
not surprising because that value was chosen by subjective comparison of alternative values. Nat-
urally, however, data-driven estimation @ is to be preferred unlesi can be pre-set based on
theoretical considerations.

7. DISCUSSION

This article gives a fairly comprehensive treatment of maximum likelihood estimation in a
particular type of network modeling problem: Beginning from first principles originally set forth by
Geyer and Thompson (1992), we discuss estimation and testing based on approximations derived
from a Markov chain Monte Carlo scheme. We extend these ideas to curved exponential family
models, then discuss particular ERGM specifications due to Snijders et al. (2004) that exploit this
extension. Finally, we fit these models to data. Although some of the ideas in this article are about
ten years old, the curved exponential family machinery and its application to the particular ERGMs
we discuss here are novel.

In our implementation of the Markov chain sampler, we chose to separate our sampled values
by a large number of Markov chain iterations, namely 1000. This 1000-step interval is vastly longer
than the interval used in several examples mentioned by Geyer and Thompson (1992). The reason
we chose such a large separation between sampled values has to do with the tradeoff, mentioned
by Geyer and Thompson (1992), between the price paid for more iterations and the price paid for
storing and using sampled values. In our implementation, additional iterations are extremely fast.
Therefore, we are willing to pay the price (more iterations) for sampled points that are closer to
independent than could be expected of points separated by only a few iterations. Additionally,
the slow mixing often exhibited by Markov chains of this type makes very long runs (much longer
than the sample size we can easily store and use) worthwhile from an exploratory perspective. This
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computational tradeoff will vary from application to application.

We have relied in this article on two distinct asymptotic arguments. On one hand, we discussed
in depth how the MCMC sample size contributes to the uncertainty in estimating the true MLE
9 by the MCMCMLEG. On the other hand, we have said relatively little about how the number of
nodes influences the quality of the estimateeven though we have relied on well-known asymp-
totic results about the MLE such as the use of Fisher information in approximating its covariance
matrix or the implicit assumption that it is approximately normally distributed. Howewvisrnot
guite the same as a traditional sample size. What might be given as a sort of “effective sample size”
for a graph of size? Presumably any answer to such a question would have to be model-specific:
Note for instance that when edges are independent, the true sample(g)zél'hnere is the further
complication that many parameters do not have interpretations that are independentefwork
might have a totally different MLE from another network twice as large but with qualitatively sim-
ilar features. Resolving such challenging issues, well beyond the scope of the current article, is of
real importance in establishing a cohesive framework of statistical network analysis.
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Figure 2: MCMC Diagnostics for the collaboration data. The left-hand side are the trace plots
of three statistics, and the right are density estimates (centered on the observed values the actual
network).
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