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Abstract

Network data arise in a wide variety of applications. Although descriptive statistics for networks
abound in the literature, the science of fitting statistical models to complex network data is still in its
infancy. The models considered in this article are based on exponential families; therefore, we refer
to them as exponential random graph models (ERGMs). Although ERGMs are easy to postulate,
maximum likelihood estimation of parameters in these models is very difficult. In this article, we
first review the method of maximum likelihood estimation using Markov chain Monte Carlo in the
context of fitting linear ERGMs. We then extend this methodology to the situation where the model
comes from a curved exponential family. The curved exponential family methodology is applied
to new specifications of ERGMs, proposed by Snijders et al. (2004), having non-linear parameters
to represent structural properties of networks such as transitivity and heterogeneity of degrees. We
review the difficult topic of implementing likelihood ratio tests for these models, then apply all
these model-fitting and testing techniques to the estimation of linear and non-linear parameters for
a collaboration network between partners in a New England law firm.

KEY WORDS: exponential random graph model; maximum likelihood estimation;
Markov chain Monte Carlo; p−star model.



1. INTRODUCTION

A network is a way to represent “relational data” — i.e., data whose properties cannot be re-

duced to the attributes of the individuals involved — in the form of a mathematical graph. For

the purposes of this article, a network consists of a set of nodes and a set of edges, where an edge

is an ordered or unordered pair of nodes. In typical applications, the nodes in a graph represent

individuals, and the edges represent a specified relationship between individuals. Nodes can also

be used to represent larger social units such as groups, families, or organizations; objects such as

physical resources, servers, or locations; or abstract entities such as concepts, texts, tasks, or ran-

dom variables. Networks have been applied to a wide variety of situations, including the structure

of social networks, the dynamics of epidemics, the interconnectedness of the World Wide Web,

and long-distance telephone calling patterns.

This article concerns inference in specific probabilistic models for networks. Throughout, we

will represent a generic random network by the matrixY, ann×n matrix wheren is the number of

nodes. EachYi j can equal zero or one, with one indicating the presence of an edge betweeni and j

and zero indicating the absence of such an edge. More complicated networks may be represented

if Yi j is allowed to take on arbitrary values, in which case the edges may be considered to have

weights; however, we avoid such complications here. We disallow the possibility of self-edges,

so Yi i = 0 for all i . Furthermore, for the sake of simplicity we develop arguments using the

assumption thatY is undirected — that is,Yi j = Yj i for all i and j so only the lower triangle of

Y is relevant. However, none of the theory we present depends essentially on the undirectedness

assumption.

The models we consider for the random behavior ofY rely on ap-vectorZ(Y) of statistics and

a parameter vectorη ∈ Rp. The canonical exponential family model is

P(Y = y) = exp{ηtZ(y)− ψ(η)}, (1)

where

exp{ψ(η)} =

∑
x

exp{ηtZ(x)} (2)

is the familiar normalizing constant associated with an exponential family of distributions (Barndorff-

Nielsen 1978; Lehmann, 1983). The sum in (2) is taken over the whole sample space, which

presents a very important problem in most applications: A sample space consisting of all possible

undirected graphs onn nodes contains exp{
(n

2

)
log 2} elements, an astronomically large number

even for moderately sizedn of, say, 20. Thus, for most applications it is impossible even to evalu-

ate the likelihood function for a particularη, let alone maximize it. We consider ways around this

problem in Section 2.
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The range of network statistics that might be included in theZ(y) vector is vast — see Wasser-

man and Faust (1994) for the most comprehensive treatment of these statistics — though we will

consider only a few in this article. We allow the vectorZ(y) to include covariate information about

nodes or edges in the graph in addition to information derived directly from the matrixy itself.

Thus,Z(y) should be viewed as a function not only ofy, but also potentially of certainexogenous

covariates, by which we mean covariates on nodes or pairs of nodes whose values are not affected

by the presence or absence of edges. For example, if each node is a person,Z(y) might include

the total number of edges between individuals of the same gender, which is a function of both the

graphy and the exogenous nodal covariate gender. For notational simplicity, we prefer to allow

the dependence ofZ on exogenous covariates to be implicit rather than explicitly indicated by the

notation.

There has been a lot of work on models of the form (1), to which we refer as exponential

random graph models or ERGMs for short. (We avoid the lengthier EFRGM, for “exponential

family random graph models,” both for the sake of brevity and because we consider some models

in this article that should technically be calledcurvedexponential families.) Holland and Leinhardt

(1981) appear to be the first to propose a specific case of model (1) in the literature. Their model,

which they called thep1 model, resulted in each dyad — by which we mean each pair of nodes

— having edges independently of every other dyad. Based on developments in spatial statistics

(Besag 1974), Frank and Strauss (1986) generalized to the case in which dyads exhibit a kind of

Markovian dependence: Two dyads are dependent, conditional on the rest of the graph, only when

they share a node. Frank (1991) mentioned the application of model (1) to social networks in its

full generality. This was pursued in depth by Wasserman and Pattison (1996). In honor of Holland

and Leinhardt’sp1 model, they referred to model (1) asp∗ (p−star), a name that has been widely

applied to ERGMs in the social networks literature.

Inference for this class of models was considered in the seminal paper by Geyer and Thompson

(1992), building on the methods of Frank and Strauss (1986) and the above cited papers. Until

recently, inference for social networks models has relied on maximum pseudolikelihood estimation

(Besag 1974; Frank and Strauss, 1986; Strauss and Ikeda, 1990; Geyer and Thompson 1992).

Geyer and Thompson (1992) proposed a stochastic algorithm to approximate maximum likelihood

estimates for model (1) among other models; this Markov chain Monte Carlo (MCMC) approach

forms the basis of the method described in this article. The development of these methods for

social network data has been considered by Dahmström and Dahmstr̈om (1993), Corander et al.

(1998), Crouch et al. (1998), Snijders (2002), and Handcock (2002).

In this article, we begin with a summary in Section 2 of the basic idea behind the MCMC max-

imum likelihood approach. Many of the estimation ideas in Section 3 are more or less implicit in

the articles of Geyer and Thompson (1992) and Geyer (1994), though their application to fitting
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curved exponential family models is new. Section 4 describes several particular ERGMs due to

Snijders et al. (2004) and demonstrates how to fit them. Section 5 discusses an approach to the

difficult issue of implementing a likelihood ratio test in this context. Finally, Section 6 ties all of

the previous sections together, demonstrating the use of these methods to fit an ERGM to a collab-

oration network among lawyers, a problem considered by Snijders et al. (2004). Whereas Snijders

et al. (2004) estimated some of the parameters in their model but assumed others were fixed and

known, we apply the curved exponential family machinery to estimating all of the parameters.

2. MARKOV CHAIN MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION

In Section 1, we pointed out the difficulty of evaluatingψ(η) in equation (2) due to the fact

that it involves a sum with an extremely large number of terms. Here, we discuss a way around this

problem in preparation for a discussion in Section 3 about estimating the parameters via maximum

likelihood. The method uses Markov chain Monte Carlo to approximate the likelihood function,

and then maximizes this approximation.

Let η and η0 denote two distinct values of the canonical parameter in model (1). We are

interested in calculating exp{ψ(η)−ψ(η0)} as a function ofη, whereη0 is fixed and known. Since

exp{ψ(η)− ψ(η0)} =

∑
x

exp{(η − η0)tZ(x)}
(

exp{(η0)tZ(x)}
exp{ψ(η0)}

)
= Eη0

[
exp{(η − η0)tZ(Y)}

]
, (3)

we may approximate exp{ψ(η)− ψ(η0)} by the sample mean

1

m

m∑
i =1

exp{(η − η0)tZ(Yi )}, (4)

whereY1, . . . ,Ym is a sample of random graphs from the distribution defined byη0. Such a sample

may be obtained using Markov chain Monte Carlo.

Let `(η) be the log-likelihood for model (1) based on observing a single realizationyobs of

Y. Lettingr (η, η0)
def
=`(η)− `(η0) denote the logarithm of the likelihood ratio, we apply the ideas

above and approximater (η, η0) by

r̂m(η, η
0)

def
= (η − η0)tZ(yobs)− log

[
1

m

m∑
i =1

exp{(η − η0)tZ(Yi )}

]
. (5)

The strong convergence ofr̂m(η, η
0) to r (η, η0) asm → ∞ is guaranteed by a Markov chain ver-

sion of the strong law of large numbers (Meyn and Tweedie, 1993). Thus, for a fixed sample size

m, maximization of̂rm(η, η
0) as a function ofη gives an approximation to the maximum likelihood
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estimatorη̂. This procedure, which may be termed Markov chain Monte Carlo maximum likeli-

hood estimation (MCMCMLE for those who like acronyms), originates in Geyer and Thompson

(1992).

Note that̀ (η) andr (η, η0) are unchanged ifZ(y) is replaced byZ(y) − a for some constant

vectora. For example, we might takea = Z(yobs), in which caseZ(y) represents thechangein

the vector of statistics for the graphy relative to the observed graphyobs. This makesZ(yobs) = 0,

which simplifies the definition of̂rm(η, η
0) in equation (5). Alternatively, we might takea =

1
m

∑m
i =1 Z(Yi ), which has the effect of centering theZ(Yi ) at zero, leading to more stable numerical

calculations.

In some applications, we may want to estimate not merely the likelihood ratio but the actual

value of the log-likelihood itself. This may be accomplished by noting that`(0) = − log M ,

whereM is the size of the sample space. For instance, if the sample space includes all undirected

graphs onn nodes, then logM =
(n

2

)
log 2. By combining̀ (0) with estimates of̀ (η)− `(η0) and

`(0)− `(η0), we obtain

ˆ̀(η)
def
= r̂m(η, η

0)− r̂m(0, η0)− log M. (6)

It remains to describe how to generate a Markov chain whose stationary distribution is given by

equation (1). The simplest Markov chain proceeds by choosing (by some method, either stochastic

or deterministic) a dyad(i, j ) and then deciding whether to setYi j = 1 or Yi j = 0 at the next step

of the chain. One way to do this is using Gibbs sampling, whereby the new value ofYi j is sampled

from the conditional distribution ofYi j conditional on the rest of the graph. Denote “the rest of the

graph” byYc
i j . ThenYi j |Yc

i j = yc
i j has a Bernoulli distribution, with odds given by

P(Yi j = 1|Yc
i j = yc

i j )

P(Yi j = 0|Yc
i j = yc

i j )
= exp{ηt1(Z(y))i j }, (7)

where1(Z(y))i j denotes the difference betweenZ(y) when yi j is set to 1 andZ(y) when yi j is

set to 0. A simple variant to the Gibbs sampler (which is an instance of a Metropolis-Hastings

algorithm) is a pure Metropolis algorithm in which the proposal is always to change the value of

yi j . This proposal is accepted with probability min{1, π}, where

π =
P(Yi j = 1 − yi j |Yc

i j = yc
i j )

P(Yi j = yi j |Yc
i j = yc

i j )
=

{
exp

{
ηt1(Z(y))i j

}
if yi j = 0;

exp
{
−ηt1(Z(y))i j

}
if yi j = 1.

The vector1(Z(y))i j used by these MCMC schemes is often much easier to calculate directly than

as the difference of two separate values ofZ(y). For instance, if one of the components of theZ(y)

vector is the total number of edges in the graph, then the corresponding component of1(Z(y))i j
is always equal to 1.
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The Metropolis scheme is usually preferred over the Gibbs scheme because it results in a

greater probability of changing the value ofyi j , a property thought to produce better-mixing chains.

However, it is well known that these simple MCMC schemes often fail for various reasons to

produce well-mixed chains (Snijders 2002; Handcock 2002, 2003; Snijders et al. 2004). The

choice of the model class and more sophisticated MCMC schemes are a topic of ongoing research.

We return to the former in Section 4.

3. ESTIMATION FOR CURVED EXPONENTIAL FAMILIES

Suppose thatη ∈ Rp, the canonical parameter in equation (1), is a function of a lower-

dimensional parameterθ ∈ Rq, q < p. If the function is linear, sayη = Aθ for somep × q

matrix A, thenθ is simply the canonical exponential family parameter for the reduced set of statis-

tics AtZ(y). However, if the function mappingθ to η is nonlinear, then in general the situation is

more complicated. The family of distributions

P(Y = y) = exp{η(θ)tZ(y)− ψ[η(θ)]}, θ ∈ Rq

is called acurved exponential familyin the terminology of Efron (1975).

The maximum likelihood estimator̂θ satisfies the likelihood equation

∇`(θ̂) = ∇η(θ̂)t [Z(yobs)− E
η( ˆθ )

Z(Y)] = 0, (8)

where∇η(θ) is the p × q matrix of partial derivatives ofη with respect toθ . We may search

for a solution to equation (8) using an iterative technique such as Newton-Raphson; however, the

exponential family form of the model makes the Fisher information matrix

I (θ) = ∇η(θ)t [Varη(θ ) Z(Y)]∇η(θ) (9)

easier to calculate than the Hessian matrix of second derivatives required for Newton-Raphson.

For more about equations (8) and (9), see Efron (1978). The information matrix (9) is the basis for

the method of Fisher scoring, which is analogous to Newton-Raphson except that−I (θ) is used

in place of the Hessian matrix. Thus, ifθ (k) denotes the estimate ofθ at thekth iteration, Fisher

scoring sets

θ (k+1)
= θ (k) +

[
I (θ (k))

]−1
∇`(θ (k)). (10)

The biggest obstacle to overcome in implementing the scoring algorithm (10) is the fact that

Eη(θ ) Z(Y) and Varη(θ ) Z(Y) are difficult to calculate directly for ERGMs. One approach to es-

timating these quantities is to use one of the MCMC methods described in Section 2 to generate

a sampleY1, . . . ,Ym from the distribution defined by the parameter valueθ , then use the sample
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mean and covariance ofZ(Y1), . . . ,Z(Ym) to approximate Eη(θ ) Z(Y) and Varη(θ ) Z(Y). How-

ever, such an approach could prove computationally expensive in an optimization routine, since a

new sample would have to be generated each time the value ofθ changed. An alternative is to gen-

erate a single sample, based on a fixed parameter valueθ0. Let Y1, . . . ,Ym denote this sample, and

suppose thatθ (k) is the value of the parameter vector at thekth iteration of an iterative algorithm.

Then the approximate Fisher scoring method is implemented as

θ (k+1)
= θ (k) +

{
Î (θ (k))

}−1
∇η(θ)t

[
Zobs−

∑
i

w
(k)
i Z i

]
, (11)

whereZobs andZ i denoteZ(yobs) andZ(Yi ), respectively;

w
(k)
i =

exp{[η(θ (k))− η(θ0)]tZ i }∑n
j =1 exp{[η(θ (k))− η(θ0)]tZ j }

;

and

Î (θ (k)) = ∇η(θ (k))t

{
m∑

i =1

w
(k)
i Z i Zt

i −

(
m∑

i =1

w
(k)
i Z i

)(
m∑

i =1

w
(k)
i Z i

)t}
∇η(θ (k)). (12)

Equations (11) and (12) are derived by first writing Eη(θ ) Z(Y) and Varη(θ ) Z(Y) in terms of ex-

pectations involving only E
η(θ

0
)
as in equation (3), then substituting sample means like expression

(4) for population means.

The two ideas above for stochastic optimization algorithms, one in which we generate a new

sample with every iteration and one in which we generate only a single sample, each have their

drawbacks. As pointed out above, the first idea is expensive computationally. However, the second

may lead to an estimatêrm that is not very close tor (where there is no ambiguity, we writer̂m and

r instead of̂rm[η(θ), η(θ0)] andr [η(θ), η(θ0)], respectively). A compromise is represented by the

following scheme, which is similar to the approach used by Geyer and Thompson (1992):

1. Select an initial valueθ0.

2. Generate an MCMC sampleZ(Y1), . . . ,Z(Ym) using the parameterθ0.

3. Iterate algorithm (11) until convergence, obtaining a maximizerθ̃ of r̂m.

4. If VarMC r̂m of equation (13) is too large compared toˆ̀(η(θ̃)), say
√

VarMC r̂m > b ˆ̀(η(θ̃))

for some constantb < 0, then setθ0
= θ̃ and return to step 2.

5. Takeθ̃ to be the MCMCMLE.
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Since θ̃ is a maximizer ofr̂m by step 3, the logic of the algorithm is that we takeθ̃ to be the

MCMCMLE as long as we’re convinced thatr̂m is close to the truer .

Let Ui denote exp{[η(θ) − η(θ0)]tZ i } for i = 1, . . . ,m andŪ =
1
m

∑m
i =1 Ui . The variance

used in step 4 is

VarMC
[
r̂m
] def

=
1

m2Ū2

K∑
k=−K

(m − |k|)γ̂k, (13)

whereγ̂k = γ̂−k denotes the sample lag-k autocovariance of the sequenceU1,U2, . . ., which we

assume to be stationary. Equation (13) is obtained from the Taylor approximation log(a/b) ≈

(a − b)/b, whence

Var
[
log

(
Ū
)]

≈
Var(Ū )

[E(Ū )]2
.

The value ofK in equation (13) is chosen large enough so that the lag-k autocovariance is approx-

imately zero for|k| > K . If the Ui are approximately uncorrelated (for example, if the Markov

chain is sampled only at very large intervals), expression (13) reduces to[
∑

i U2
i /(mŪ )2] − 1/m.

After the algorithm has converged, the question of obtaining standard errors remains. There

are two interesting aspects of the error: The MCMC error, which is the error in approximating

the true MLE, θ̂ , by the MCMCMLE, θ̃ ; and the usual error inherent in using the MLEθ̂ to

approximate reality. For the latter, we rely on standard asymptotic results and use the estimated

Fisher information matrix (12) to obtain an estimate[ Î (θ̃)]−1 of the covariance matrix.

For the former error, incurred by approximatingθ̂ by θ̃ , we obtain a separate MCMC covariance

matrix. Geyer (1994) gives mild regularity conditions under which
√

m(θ̃ − θ̂) is asymptotically

normal, conditional on̂θ . The asymptotic covariance matrix of
√

m(θ̃ − θ̂) forms the basis of our

MCMC covariance matrix.

A first-order Taylor expansion gives

√
m(θ̃ − θ̂) ≈ −

[
∇

2r̂m(θ̃)
]−1 [√

m∇r̂m(θ̂)
]
. (14)

(Note that we writer̂m(θ) instead ofr̂m[η(θ), η(θ0)] in order to simplify notation.) Suppose

that graphsY1,Y2, . . . arise from a (stationary) Markov chain defined byθ0. In expression (14),
√

m∇r̂m(θ̂) converges in distribution asm → ∞ to aq-variate normal distribution with mean0

and covariance matrix [
c(θ0)

c(θ̂)

]2 ∞∑
k=−∞

Cov[W1(θ̂),W1+|k|(θ̂)], (15)

wherec(θ)
def
= exp{ψ[η(θ)]} is the normalizing constant of equation (2) and

W i (θ)
def
= {Z(yobs)− Z(Yi )} exp

{
[η(θ)− η(θ0)]tZ(Yi )

}
. (16)
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We do not know the value of̂θ in expression (15); therefore, we approximate it byθ̃ . Using a sam-

ple mean as in equation (4) to approximate the ratioc(θ0)/c(θ̃), expression (15) is approximately

Ṽ
def
=

1

m2

[
m∑

i =1

exp{[η(θ0)− η(θ̃)]tZ(Yi )}

]2 K∑
k=−K

ξ̂k,

whereξ̂k = ξ̂−k is the sample lag-k autocovariance of the sequenceW1(θ̃),W2(θ̃), . . ..

As we remarked earlier, the Hessian matrix∇
2r̂m(θ̃) of equation (14) is difficult to calculate.

Therefore, we make one final substitution and use instead the estimated Fisher information matrix

Î (θ̃), which yields

1

m

[
Î (θ̃)

]−1
Ṽ
[
Î (θ̃)

]−1
(17)

as our estimated MCMC covariance matrix forθ̃ .

4. ALTERNATING K -STARS AND ALTERNATING K -TRIANGLES

We illustrate the methods discussed in Sections 2 and 3 by applying them to a class of ERGMs

proposed by Snijders et al. (2004). To begin with, we define graph statisticsD0(y), . . . , Dn−1(y),

known as thedegree distributionof y, andP0(y), . . . , Pn−2(y), known as theshared partner dis-

tribution of y. The degree distribution statistics are well-known in the networks literature, whereas

the shared partner distribution statistics appear to be novel.

For a giveni , 1 ≤ i ≤ n − 1, Di (y) is defined to be the number of nodes iny whose degree

— the number of edges incident to the node — equalsi . For instance,Dn−1(y) = n wheny is the

complete graph andD0(y) = n when y is the empty graph. Note thatD0, . . . , Dn−1 satisfy the

linear constraintD0 + · · · + Dn−1 = n.

For a giveni , 1 ≤ i ≤ n − 2, Pi (y) is defined to be the number of dyads( j, k) — where we

assumej < k since the graph is assumed undirected — such thatj andk are neighbors of each

other and they share exactlyi neighbors in common. (“Neighbors” are simply nodes connected by

an edge.) Unlike theDi statistics, thePi statistics do not satisfy a linear constraint; however, note

that P0 + · · · + Pn−2 equals the total number of edges in the graph.

Snijders et al. (2004) base some of their ERGMs on graph statistics that may be derived from

the Di and Pi Let Sk(y), 1 ≤ k ≤ n − 1, denote the number ofk-stars in the graphy. A k-star

consists of a node together with a set ofk of its neighbors. Like the degree statisticsDi , thek-star

statistics are well-known in the networks literature. Since a node with degreei is the center of
(i
k

)
k-stars,

Sk(y) =

n−1∑
i =1

(
i

k

)
Di (y) for k ≥ 2. (18)
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For k = 1, ak-star is simply an edge, and the number of edges is

E(y)
def
= S1(y) =

1

2

n−1∑
i =1

i D i (y). (19)

In addition to the well-knownk-star statistics, Snijders et al. (2004) also introduce a new set

of statistics they callk-triangles. They useTk(y), 1 ≤ k ≤ n − 2, to denote the number ofk-

triangles in the graphy. A k-triangle consists ofk triangles that share a common edge. Thus, if the

endpoints of a particular edge share exactlyi neighbors in common, then that edge is the base of

exactly
(i
k

)
k-triangles. The relationship between thek-triangle statisticsTk and the shared partner

statisticsPi is very similar to the relationship between thek-star statistics and the degree statistics

expressed in equation (18):

Tk(y) =

n−2∑
i =1

(
i

k

)
Pi (y) for k ≥ 2. (20)

For k = 1, ak-triangle is simply a triangle, so

T1(y) =
1

3

n−2∑
i =1

i Pi (y). (21)

1
2

3
4

5

Figure 1: For this undirected, five-node graph, the degree distribution(D0, . . . , D4) is given by
(0,1,1,3,0) and the shared partner distribution(P0, . . . , P3) is given by(1,4,1,0). The edges
might represent, say, some social relationship between individuals, and the node shapes might
signify some exogenous categorical covariate such as gender.

To make these concepts concrete, consider the simple undirected graph depicted in Figure 1.

There are three 3-stars, centered at nodes 2, 3, and 4, and each of these accounts for
(3
2

)
= 3 of the

ten 2-stars. There are two 1-triangles (i.e., two triangles), and since these two triangles share an

edge there is also one 2-triangle. The degree distribution and the shared partner distribution, given

in the caption of Figure 1, may be used to verify equations (18), (19), (20), and (21) along with the

fact thatE(y) =
∑n−2

i =0 Pi (y). These relationships may be combined to yield

P0(y) =
1

2

n−1∑
i =1

i D i (y)−

n−2∑
i =1

Pi (y). (22)
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Since bothD0 and P0 may be expressed as linear combinations of the otherDi and Pi statistics,

the vectorZ(y) of ERGM (1) based on all degree and shared partner statistics should omitD0 and

P0:

Z(y) =
[
D1(y), . . . , Dn−1(y), P1(y), . . . , Pn−2

]t
. (23)

WhenZ(y) of equation (23) is used in model (1) with an unconstrainedη ∈ R2n−3, the model

class is subject to well-known issues of degeneracy (Snijders 2002; Handcock 2002, 2003; Snijders

et al. 2004). One type of model degeneracy occurs when the model places most of the probability

mass on only a few of the possible graph configurations. The fact that nondegenerate values of

η form only a small section of the natural parameter space (Handcock 2003) reduces the value of

this model class for describing realistic phenomena. Another problem is the nonexistence of an

MLE: Whenever the observed graph statistics fall on the convex hull of the sample space of graph

statistics, then the MLE does not exist (Barndorff-Nielsen 1978, Handcock 2003). If the fullZ(y)

vector of equation (23) is used, this problem is virtually guaranteed to occur, since typically at least

one element ofZ(y) is zero for any realistic network.

To address these problems, we consider constraints on the natural parameter space. In doing

so, we hope to limit our attention to subsets of the full parameter space that result in more realistic

social network models. Furthermore, the constraints reduce the dimension of the sample space of

statistics and make it more probable that an MLE will exist. One way to implement constraints in

this case was recommended by Snijders et al. (2004), who introduced an alternatingk-star statis-

tic and an alternatingk-triangle statistic (in addition, they introduced an alternating independent

two-paths statistic that we do not discuss here). In reality, these “statistics” aren’t quite statistics

because they are based on parameters; however, Snijders et al. (2004) assume that these param-

eters are fixed and known. In this article, we relax this restriction and estimate these additional

parameters.

The alternatingk-star and alternatingk-triangle “statistics” of Snijders et al. (2004) are defined

as

uλ(y) = S2(y)−
S3(y)

λ
+ · · · + (−1)n

Sn−1(y)

λn−2

and

vγ (y) = 3T1 −
T2

γ
+ · · · + (−1)n−1 Tn−2

γ n−3
,

respectively, whereλ andγ are additional parameters. Snijders et al. (2004) consider an ERGM

that includes statisticsE (the number of edges),uλ, andvγ :

P(Y = y) ∝ exp{θ1E(y)+ θ2uλ(y)+ θ3vγ (y)}. (24)
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Because we wish bothλ and γ to be positive, we reparameterize, lettingθ4 = logλ and

θ5 = logγ . We may express the canonical parameterη of equation (1) in terms ofθ1, . . . , θ5

by replacingSk andTk by the expressions in equations (18), (19), (20), and (21): The binomial

theorem yields

u(y; θ4)
def
=uλ(y) = e2θ4

n−1∑
i =1

{(
1 − e−θ4

)i
− 1 + ie−θ4

}
Di (y) (25)

and

v(y; θ5)
def
=vγ (y) = eθ5

n−2∑
i =1

{
1 −

(
1 − e−θ5

)i}
Pi (y). (26)

Equations (25) and (26) reveal that the coefficients ofDi andPi are roughly in geometric sequence.

For this reason, we refer toθ4 andθ5 as the scale parameters of the geometrically weighted degree

distribution and geometrically weighted shared partner distribution, respectively. The function

η(θ) relating the canonical parameterη to the parameter(θ1, . . . , θ5) of model (24) is required by

equations such as (8) and (9); it is summarized by

ηi =

{
θ1i + θ2ieθ4 − θ2e2θ4 + θ2e2θ4(1 − e−θ4)i if 1 ≤ i ≤ n − 1;
θ3eθ5

[
1 − (1 − e−θ5)i

]
if n ≤ i ≤ 2n − 3.

(27)

Model (24) subsumes a number of simpler models. Whenθ2 = θ3 = 0, the resulting model

P(Y = y) ∝ exp{θ1E(y)} is the simplistic Bernoulli graph (also known as an Erdős-Ŕenyi graph)

in which each edge occurs independently with probabilityeθ1/(1 + eθ1). Whenθ3 = θ4 = 0,

equation (27) reduces toηi = i (θ1 + θ2) − θ2 for 1 ≤ i ≤ n − 1, which givesP(Y = y) ∝

exp{(θ1 + θ2)E(y) + θ2D0(y)}. This model contains a “Bernoulli” term and one additional term

that governs the propensity for a node to remain unconnected to the rest of the graph. Similarly,

whenθ2 = θ5 = 0, the model reduces toP(Y = y) ∝ exp{(θ1 + θ3)E(y) − θ3P0(y)}, which

contains an additional term that governs how likely neighboring nodes are to resist having any

shared neighbors. It is important to note that ifθ2 = 0 (or θ3 = 0), there is an identifiability

problem because in that case the value ofθ4 (or θ5) is arbitrary. In practical terms, this means that

we should not attempt to interpret the value ofθ4 (or θ5) unless the hypothesisθ2 = 0 (or θ3 = 0)

can be rejected.

5. LIKELIHOOD RATIO TESTING

Since 2̂rm[η(θ̃), η(θ0)] is an estimate of the likelihood ratio statistic 2r [η(θ̃), η(θ0)] = 2`[η(θ̃)]−

2`[η(θ0)] for testing the null hypothesisθ = θ0, it might seem that likelihood ratio testing is

straightforward in this framework. Unfortunately, this is not quite the case: The approxima-

tion 2r̂m[η(θ), η(θ0)] ≈ 2r [η(θ), η(θ0)] becomes worse asθ gets farther fromθ0. To estimate
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r [η(θ̃), η(θ0)] accurately necessitates methods to try to lessen the impact of the MCMC error. We

do not make any claims here about the distribution of 2r [η(θ̃), η(θ0)]; we concern ourselves in this

section only with how best to approximate it using MCMC.

The problem reduces to the problem of estimating the ratio of normalizing constantsc(θ̃)/c(θ0),

which is a problem that has received quite a bit of attention in the statistics literature in the past

decade. Indeed, in presenting some of the history of this problem, Gelman and Meng (1998) point

out that it had been studied by physicists before it came to the notice of statisticians, and quite a

bit of reinventing the wheel was done by the statistics community. The basic idea ofpath sampling

(Gelman and Meng, 1998) is as follows. Define a smooth mappingθ : [0,1] → Rq such that

θ(0) = θ0 andθ(1) = θ̃ . Then

Eθ (u)

{
d

du
log p[Y|θ(u)]

}
=

d

du

∑
y

p[y|θ(u)] = 0, (28)

where

p(y|θ)
def
= exp{[η(θ)]t Z(y)− ψ[η(θ)]} (29)

is the probability mass function. Combining equations (28) and (29) gives

d

du
ψ{η[θ(u)]} = Eθ (u)

{
d

du
{η[θ(u)]}t Z(Y)

}
,

which may be integrated to give

ψ[η(θ̃)] − ψ[η(θ0)] =

∫ 1

0
Eθ (u)

d

du
{η[θ(u)}t Z(Y)du = E

d

dU
{η[θ(U )]}t Z(Y). (30)

The last expectation in equation (30) is taken with respect to the joint distribution ofU andY,

whereU is uniform (0,1) andY|U is distributed according toθ(U ).

Equation (30) suggests that`[η(θ̃)] − `[η(θ0)] = ψ[η(θ̃)] − ψ[η(θ0)] could be estimated by

drawing a sample(U1,Y1), . . . , (UK ,YK ) from the joint distribution ofU andY, then calculating

the sample average

1

K

K∑
i =1

[∇θ(Ui )]{∇η[θ(Ui )]}Z(Yi ),

where∇θ(u) is the 1×q vector of derivatives ofθ(u) with respect tou. We may allow theUi to be

sampled from some density on (0,1), sayq(u), other than uniform; each summand in the sample

mean above should then be divided byq(Ui ). However, the functionq(u) may be absorbed into

the path mapθ(u), so no generality is lost by assuming thatU is uniformly distributed.

On the other hand, it is not hard to generalize the argument leading to equation (30) to allow

for the possibility thatU has finite support on[0,1]. In fact,U need not even be random: Suppose
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that 0= u0 < u1 < . . . < uJ = 1 are given and for eachj , 0 ≤ j ≤ J, we draw a random sample

U j 1, . . . ,U j K j from the distribution defined byθ(u j ). The new estimator of̀[η(θ̃)] − `[η(θ0)] is

J∑
j =1

K j∑
i =1

1

K j
[∇θ(U j i )]{∇η[θ(U j i )]}Z(Yj i ). (31)

This idea is a simple form of a technique calledbridge samplingby Meng and Wong (1996). In the

implementation of bridge sampling carried out in Section 6, the path betweenθ0 andθ̃ is simply

the linear mapθ(u) = (1 − u)θ0
+ uθ̃ .

6. EXAMPLE: COLLABORATION WITHIN A LAW FIRM

As an application of these ideas, we consider the collaborative working relations between 36

partners in a New England law firm. The sociometric relationship is one of many considered by

Lazega (2001), Lazega and Pattison (1999) and Snijders et al. (2004) (whom we follow). Specifi-

cally, a tie is said to exist between two partners if, and only if, both indicate that they collaborate

with the other. As noted in Snijders et al. (2004), the degrees of the nodes range from 0 to 16,

with an average of 6.4. The data include covariates collected on each partner. Here we consider

seniority (rank number of entry into the firm), gender, office (there were three offices in different

cities), and practice (there are two possible values, litigation=0 and corporate law=1).

Our objective is to explain the observed structural pattern of collaborative ties as a function

of network statistics, both exogenous and endogenous. The purely endogenous statistics (i.e.,

those that are true functions of the graph matrixY) we consider are the number of edges and the

alternatingk-triangle statisticv(y; θ) of section 4. We have not included the alternatingk-star

statisticu(y; θ), both to simplify the presentation and because our results and those of Snijders et

al. (2004) indicate that including that statistic does not appreciably alter the fit of the model.

The statistics involving exogenous data that we consider are all of the form

Z(y) =

∑
1≤i< j ≤n

yi j f (Xi ,X j ) (32)

for some functionf of the nodal covariate vectorsXi andX j . In expression (32),yi j is the indicator

of an edge between nodesi and j , so f (Xi ,X j ) may be thought of as simply an entry in the

change statistic vector1(Z(y))i j of equation (7). Following Snijders et al. (2004), we first consider

the “main effects” of both seniority and practice, for whichf (Xi ,X j ) = seniorityi + seniorityj

and f (Xi ,X j ) = practicei + practicej , respectively. We also consider the “similarity effects”

of practice, gender, and office. The similarity effect for, say, practice definesf (Xi ,X j ) to be

I {practicei = practicej }. Settingθ2 = θ4 = 0 and adding the covariates, model (24) becomes

P(Y = y) ∝ exp{θ1E(y)+ θ3v(y; θ5)+ βTZ(y)}, (33)
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whereZ(y) is the 5-dimensional vector of graph statistics containing the two main effects (seniority

and practice) and three similarity effects (practice, gender, and office) described above. Essentially,

this model allows us to estimate the effects of the covariates on collaboration while controlling for

the network density (as measured byE(y)) and a structural transitivity effect (as measured by

v(y; θ5)).

Here we briefly discuss some aspects of implementing the inferential procedures given in Sec-

tions 2 and 3. To monitor the statistical properties of the MCMC algorithm, we use theRpackage

coda . Figure 2 depicts the trace and density plots for a run of sample size 240,000 where only

every 1000th step of the Markov chain is sampled (and 50,000 burnin steps were performed). Each

row corresponds to a statistic in the model. The values are measured as deviations from the ob-

served value of the statistic. The left column has the trace plots of the sample and the right column

has the density plots. Visually the sampler appears to be mixing and the densities are centered about

the observed statistics. This visual impression is supported by numerical diagnostics (Raftery and

Lewis 1996, Gelman 1996), which indicate that the 240,000 values are more than sufficient. The

initial value ofθ0 was the maximum pseudolikelihood estimate. (The pseudolikelihood function is

the “likelihood” obtained by considering all edgesyi j to be independent, with probabilities given

by equation (7); thus, the maximum pseudolikelihood estimate may be obtained by logistic regres-

sion.) For the application in this article, only two recalculations ofθ0 as described in Section 3

were necessary.

Table 1 reports the estimates for two models. Model 1 fixes the value ofθ5 at log(3) = 1.10,

the value chosen by Snijders et al. (2004). Withθ5 fixed the model is a regular (i.e., non-curved)

exponential family. These values replicate those in Snijders et al. (2004), Table 1, Model 2. For

compatibility with that paper, we have calculated the estimates conditional on the total number of

ties. This conditioning, in which the number of edges is held constant at 115, removes the edges

statistic from the model. The unconditional estimates are essentially identical, indicating that the

density of collaboration is approximately ancillary to the other statistics.

The β coefficients can be interpreted as conditional log-odds ratios (Snijders et al. (2004)).

There is also a relative risk interpretation that is often simpler. For example, exp(β3) is the relative

risk of collaboration between two partners from the same practice compared to two partners from

different practices with the same values of the other covariates and structural effects. The probabil-

ities involved are conditional on these other covariates and structural effects. The interpretation for

non-binary and multiple covariates is similar: exp(β1) is the relative risk of collaboration between

two partners compared to two partners with vector of covariates differing by1 (and with the same

values of the structural effects).

The standard errors of Table 1 are obtained from theÎ matrix of equation (12), evaluated at

θ̃ (the MCMC standard errors obtained from equation (17) are much smaller; if they weren’t, a
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Model 1 Model 2
Parameter est. s.e. est. s.e.
Alternatingk-triangles, (θ3) 0.612 0.091 0.878 0.279
Rate of transitivity (θ5) 1.099 – 0.814 0.196
Seniority main effect (β1) 0.024 0.006 0.023 0.006
Practice main effect (β2) 0.352 0.113 0.390 0.117
Same practice (β3) 0.708 0.194 0.757 0.194
Same gender (β4) 0.621 0.257 0.688 0.248
Same office (β5) 1.151 0.195 1.123 0.194

Table 1: MCMC parameter estimates for the collaboration network. The edge parameterθ1 has
been eliminated from model (33) by conditioning.

larger sample would have been taken). The usual assessments of significance are based on the

approximation of the distributions of thet-ratios by standard Gaussian distributions. To assess

the accuracy of this approximation, we also applied MCMCp-value tests (Besag and Clifford

1989; Besag 2000). For example, consider evaluating the statistical significance of the main effect

of seniority. We use the MCMC procedure to simulate seniority statistics from the model, only

allowing steps in the Markov chain that keep all the other statistics fixed, and withβ1 = 0. This

produces a null distribution for the seniority statistic, from which ap−value for the observed

seniority statistic may be obtained. Using this procedure we were able to validate the Gaussian

approximation to thet-ratios. Thus thet-ratios can be used as an informal guide, even though the

MCMC p-values are to be preferred for formal testing.

Model 2 fits the curved exponential family model estimatingθ5. The interpretation of the other

parameters is similar to Model 1: Collaboration is strongly enhanced by seniority and by working

in the same office, and slightly less by having the same practice or gender. Collaboration is also

enhanced by practicing corporate law, but at a lower level. The large positive values ofθ3 andθ5

indicate the presence of complex transitive structure that enhances collaboration beyond the effect

that would be expected based on the individual and pairwise partner attributes alone. The scale

parameterθ5 controls the nature of this transitivity: Larger values ofθ5 correspond to increased

weight on the higher numbers of shared partners, whereas small positive values correspond to very

localized transitive effects (recall the interpretation of the caseθ2 = θ5 = 0 following equation

(27)).

It is of interest to test if the value of the scaling parameterθ5 is statistically significantly dif-

ferent from that specified in Snijders et al. (2004). To do this we can conduct likelihood ratio tests

using bridge sampling as given in Section 5 withJ = 20 andK j = 200,000, j = 0, . . . , J, and a

sampling interval of 1,000. Table 2 provides the deviance values for a number of models.

The p−values in Table 2 are calculated by the MCMC procedure given above; further expla-
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Model Residual Deviance Deviance Residual d.f.p−value
NULL 598.78 – – –
Covariates only 501.80 96.98 5 0.000
Model 1 457.65 44.15 1 0.000
Model 2 456.21 1.44 1 0.176

Table 2: Deviances for the collaboration network among lawyers.

nation of and justification for this procedure are given by Besag and Clifford (1989) and Besag

(2000). The usualχ2
1 approximation gives ap−value for comparing Model 2 to Model 1 of 0.231.

These results indicate that the covariates substantially improve the model fit, as does the in-

clusion of the transitivity term (Model 1). Allowing the scale of the transitivity to be estimated

does not improve the fit significantly from the value specified in Snijders et al. (2004), which is

not surprising because that value was chosen by subjective comparison of alternative values. Nat-

urally, however, data-driven estimation ofθ5 is to be preferred unlessθ5 can be pre-set based on

theoretical considerations.

7. DISCUSSION

This article gives a fairly comprehensive treatment of maximum likelihood estimation in a

particular type of network modeling problem: Beginning from first principles originally set forth by

Geyer and Thompson (1992), we discuss estimation and testing based on approximations derived

from a Markov chain Monte Carlo scheme. We extend these ideas to curved exponential family

models, then discuss particular ERGM specifications due to Snijders et al. (2004) that exploit this

extension. Finally, we fit these models to data. Although some of the ideas in this article are about

ten years old, the curved exponential family machinery and its application to the particular ERGMs

we discuss here are novel.

In our implementation of the Markov chain sampler, we chose to separate our sampled values

by a large number of Markov chain iterations, namely 1000. This 1000-step interval is vastly longer

than the interval used in several examples mentioned by Geyer and Thompson (1992). The reason

we chose such a large separation between sampled values has to do with the tradeoff, mentioned

by Geyer and Thompson (1992), between the price paid for more iterations and the price paid for

storing and using sampled values. In our implementation, additional iterations are extremely fast.

Therefore, we are willing to pay the price (more iterations) for sampled points that are closer to

independent than could be expected of points separated by only a few iterations. Additionally,

the slow mixing often exhibited by Markov chains of this type makes very long runs (much longer

than the sample size we can easily store and use) worthwhile from an exploratory perspective. This
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computational tradeoff will vary from application to application.

We have relied in this article on two distinct asymptotic arguments. On one hand, we discussed

in depth how the MCMC sample sizem contributes to the uncertainty in estimating the true MLE

θ̂ by the MCMCMLE θ̃ . On the other hand, we have said relatively little about how the number of

nodesn influences the quality of the estimateθ̂ , even though we have relied on well-known asymp-

totic results about the MLE such as the use of Fisher information in approximating its covariance

matrix or the implicit assumption that it is approximately normally distributed. However,n is not

quite the same as a traditional sample size. What might be given as a sort of “effective sample size”

for a graph of sizen? Presumably any answer to such a question would have to be model-specific:

Note for instance that when edges are independent, the true sample size is
(n

2

)
. There is the further

complication that many parameters do not have interpretations that are independent ofn; a network

might have a totally different MLE from another network twice as large but with qualitatively sim-

ilar features. Resolving such challenging issues, well beyond the scope of the current article, is of

real importance in establishing a cohesive framework of statistical network analysis.
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Figure 2: MCMC Diagnostics for the collaboration data. The left-hand side are the trace plots
of three statistics, and the right are density estimates (centered on the observed values the actual
network).
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