# TSUNAMI & STRATIGRAPHY MODULE

# Table of Content

# Tsunami & Stratigraphy

| Vocabulary                                 | 58 |
|--------------------------------------------|----|
| Background Information                     | 59 |
| Exercise 1                                 |    |
| Plotting topographic profiles              | 61 |
| Exercise 2                                 |    |
| Drawing stratigraphic sections             | 65 |
| Exercise 3                                 |    |
| Correlating tephra layers between strati-  |    |
| graphic sections                           | 69 |
| Exercise 4                                 |    |
| Adding time to your stratigraphic sections |    |
|                                            | 71 |
| Exercise 5                                 |    |
| Homework                                   | 72 |

## Vocabulary

#### Exacavation:

A rectangular hole dug by scientists to see the stratigraphy

#### GPS:

A system of satellites that can be used by people to find the latitude and longitude of their location on Earth.

#### Marsh soil / peat:

Soil made of organic matter such as dead leaves and grass.

#### Soil

Dark upper layer of earth in which plants grow

#### Stratigraphy:

The study of accumulated sediments

#### Tephra:

Fragments of rock thrown into the air by volcanic eruption. Tephra is classified into different categories based on the size of the grains:

| Name          | Size             |
|---------------|------------------|
| Ash           | < 2 mm           |
| Cinder        | 2 mm < x < 64 mm |
| Block or Bomb | > 64 mm          |

#### Topography:

Study of the shape of the earth's surface, specifically changes in elevation and the shape of a landscape

#### Tsunami:

A long-period wave generated by an impulse such as earthquakes, landslides, underwater volcanic eruptions, and meteor impacts

#### Volcano:

An opening in the earth's surface through which lava and gasses from below the earth's surface escape.

#### yr BP (years before present):

Date in the years before 1950 (e.g. 50 yr BP is the same as AD 1900).

### **Background Information**

Stratigraphy and the relation between the stratigraphy of different sites allow scientists to identify and date past natural disasters. Stratigraphic layers can record tsunamis, volcanic eruptions, and changes in environment. Using many data points, scientists can estimate the size of past natural disasters based on the area affected by a specific event.

During certain types of volcanic eruptions a mixture of hot gasses, rock fragments, and molten rock are pushed into the atmosphere. The mixture is carried by the prevailing wind. Recent incidents, such as the shut down of airports in Europe due to the eruption of an Icelandic volcano, were due to volcanic particles in the atmosphere. Because of gravity and the cooling, the mixture falls back to earth, creating layers of unconsolidated volcanic rock, called tephra. Typically the largest grains are found near the volcano and the smallest grains are carried further. Tephra is described based on the size of the grains and the chemistry of the rocks. Different volcanoes and often even different eruptions from the same volcano have different ratios of elements in their tephra. Because these layers are widespread and represent a short period of time (hours to weeks), scientists can date these layers and use them to correlate between sites.

Tsunamis are long-period waves generated by some type of impulse such as an earthquake or landslide. They differ from normal wind waves because they move the entire water column even in the deep ocean. When the waves come into shore, they both erode part of the shoreline and deposit sediment over low-lying areas. In the geological record these layers can be identified in areas where sand is not common, such as bogs and marshes. These layers can also contain fragments of marine shell or microscopic marine organisms such as diatoms or foraminifera. These indicate that the sediment originated from the ocean and were transported to the freshwater environment. By counting the number of tsunami deposits in a time period, scientists can find the frequency of tsunami events.

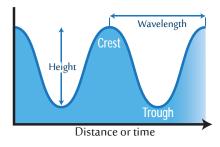
## **Background Information**

Continued

Tsunami waves compared to wind waves Wavelength:

- Wind waves: 100 200 m
- Tsunami: 200 500 km

#### Velocity:


(both types of waves move slower as they move onto the shore)

- Wind waves: 90 km/hr
- Tsunami: 950 km/hr (as fast as jet planes) in deep water

#### Period:

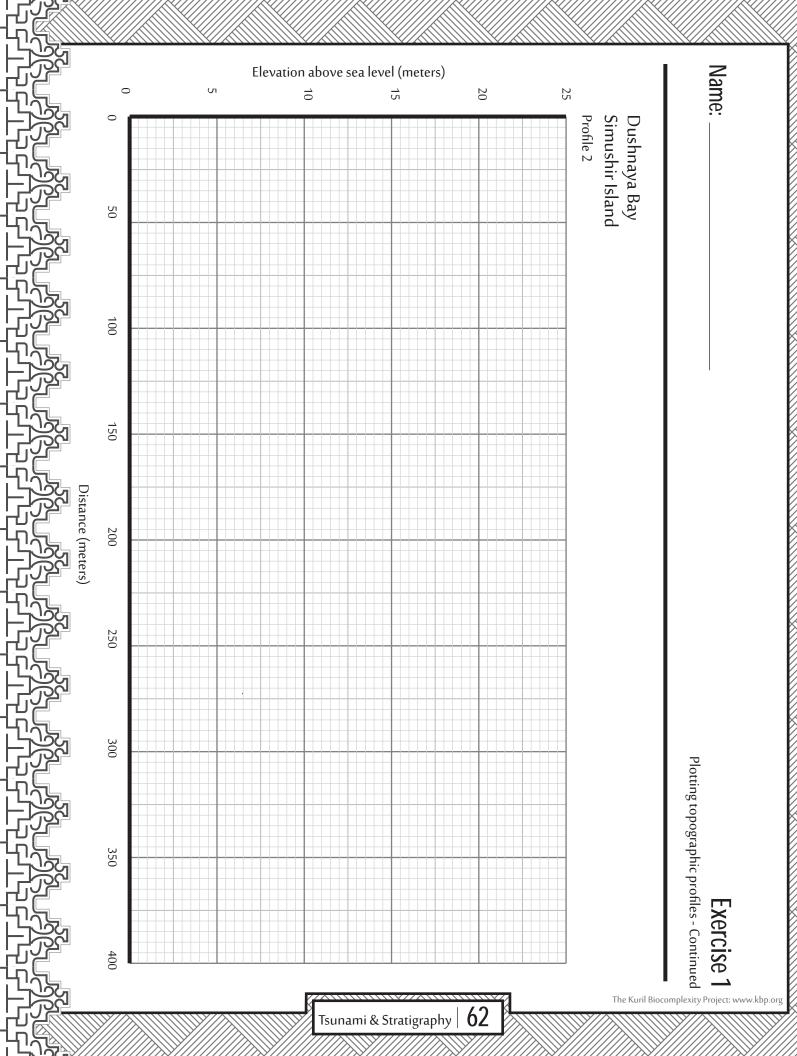
(time between two successive waves)

- Wind waves: 5 20 sec
- Tsunami: 10 min to 2 hrs



#### Introduction:

Your goal is to determine how often big tsunamis affect the Kuril Island coasts using the same method that tsunami scientists use.


#### Exercise 1:

Plotting topographic profiles

Measuring coastal topography is the first step in identifying tsunami deposits and determining how big the tsunamis were. Open the Excel spreadsheet provided on-line or on a CD in the Burke Box. Use Excel to make a graph of the surface of the coastal plain. Distance should be your x-axis and elevation your y-axis; label your axes. Circle the points on your topographic plots where we dug excavations.

How far inland and at what elevation did we dig excavations? (refer to the spreadsheet for the most accurate numbers; look at the profile to get an idea of distance and elevation)

|                          | Site 1 | Site 2 | Site 3 | Site 4 |
|--------------------------|--------|--------|--------|--------|
| Distance<br>(in meters)  |        |        |        |        |
| Elevation<br>(in meters) |        |        |        |        |



# Exercise 1

Plotting topographic profiles - Continued

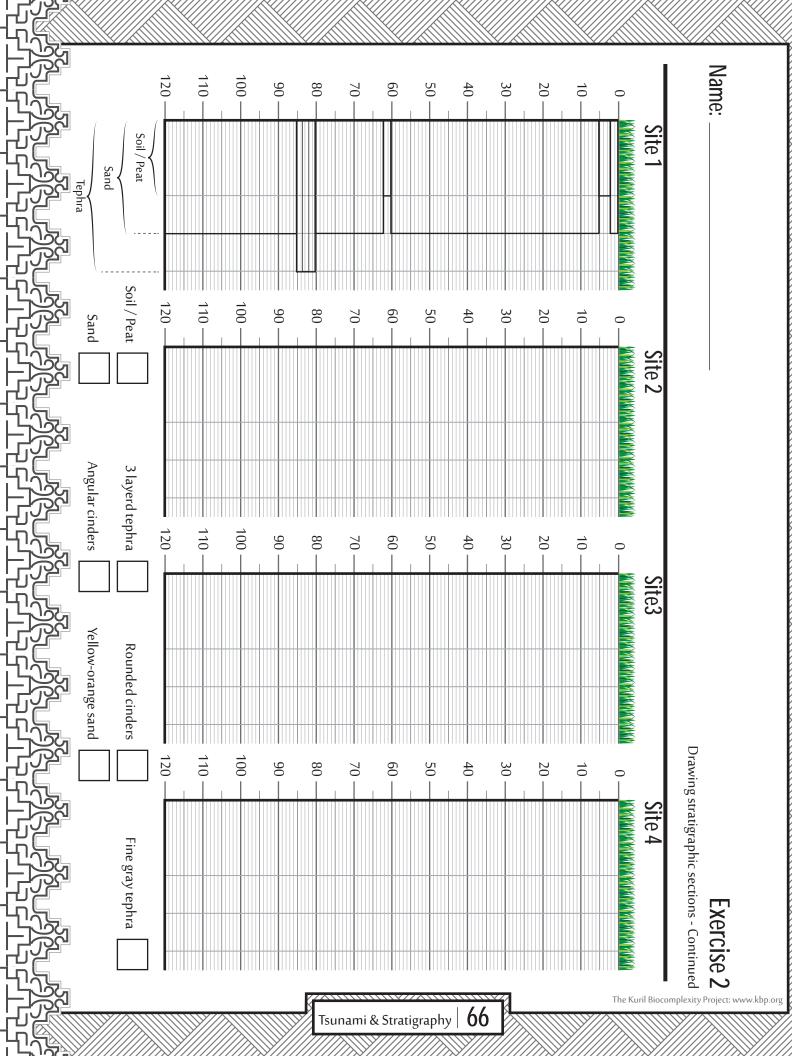
|    | distance<br>(in meters) | elevation<br>(in meters) | Notes                                      |        |
|----|-------------------------|--------------------------|--------------------------------------------|--------|
| 1  | 361                     | 20.0                     | edge of birch forest, quite flat past here |        |
| 2  | 335                     | 19.1                     | excavation 102 near here                   | SITE 4 |
| 3  | 313                     | 18.5                     |                                            |        |
| 4  | 290                     | 17.9                     |                                            |        |
| 5  | 269                     | 17.2                     |                                            |        |
| 6  | 247                     | 17.0                     | low point                                  |        |
| 7  | 227                     | 17.5                     | excavation 101                             |        |
| 8  | 217                     | 18.5                     |                                            |        |
| 9  | 207                     | 19.7                     | scattered pine shrubs                      |        |
| 10 | 197                     | 21.4                     | top of slope                               | SITE 3 |
| 11 | 191                     | 20.8                     |                                            |        |
| 12 | 183                     | 17.7                     |                                            |        |
| 13 | 182                     | 16.6                     |                                            |        |
| 14 | 179                     | 15.8                     | step in slope                              |        |
| 15 | 176                     | 15.1                     |                                            |        |
| 16 | 172                     | 13.1                     |                                            |        |
| 17 | 170                     | 12.6                     |                                            |        |
| 18 | 164                     | 10.1                     |                                            |        |
| 19 | 161                     | 9.0                      |                                            |        |
| 20 | 157                     | 8.1                      | base of slope, tall flowers above          |        |
| 21 | 154                     | 8.0                      | small ridge                                |        |
| 22 | 152                     | 7.8                      |                                            |        |
| 23 | 150                     | 7.4                      | edge of marsh                              |        |
| 24 | 147                     | 7.2                      | mid marsh                                  |        |
| 25 | 145                     | 7.4                      | edge of marsh                              |        |
| 26 | 144                     | 7.5                      |                                            |        |
| 27 | 141                     | 7.1                      | edge of marsh                              |        |
| 28 | 139                     | 7.0                      | mid marsh                                  |        |
| 29 | 137                     | 7.1                      | edge of marsh                              |        |
| 30 | 135                     | 7.1                      | marshy area                                | SITE 2 |
| 31 | 130                     | 7.4                      | [no point 32]                              |        |
| 33 | 126                     | 8.0                      | ridge crest                                |        |

# Exercise 1

Plotting topographic profiles - Continued

| 34 | 123 | 7.3 |                                                      |        |
|----|-----|-----|------------------------------------------------------|--------|
| 35 | 122 | 6.7 | floated debris, 2006 runup                           |        |
| 36 | 117 | 6.6 | beach grass starts; people disturbance               |        |
| 37 | 114 | 7.2 |                                                      |        |
| 38 | 111 | 7.4 |                                                      |        |
| 39 | 108 | 6.7 | trough                                               |        |
| 40 | 104 | 7.3 |                                                      |        |
| 41 | 101 | 7.7 | ridge crest                                          |        |
| 42 | 98  | 7.4 | people disturbance                                   |        |
| 43 | 95  | 7.5 | excavation near here                                 |        |
| 44 | 92  | 7.3 |                                                      |        |
| 45 | 91  | 7.2 | edge of ridge                                        |        |
| 46 | 87  | 4.4 | change in slope                                      |        |
| 47 | 84  | 4.0 | trough with short flowers; less beach grass          |        |
| 48 | 81  | 4.6 |                                                      |        |
| 49 | 76  | 4.9 |                                                      |        |
| 50 | 70  | 5.4 | excavation near here                                 | SITE 1 |
| 51 | 67  | 3.9 |                                                      |        |
| 52 | 65  | 3.7 | low spot                                             |        |
| 53 | 59  | 4.4 |                                                      |        |
| 54 | 55  | 5.1 | ridge                                                |        |
| 55 | 53  | 4.6 | beach grass                                          |        |
| 56 | 51  | 4.5 | top edge of scarp; cleaned cliff face for excavation |        |
| 57 | 50  | 2.8 | base of scarp, sandy                                 |        |
| 58 | 42  | 2.8 | top of small berm; a little vegetation               |        |
| 59 | 38  | 2.0 |                                                      |        |
| 60 | 34  | 1.5 |                                                      |        |
| 61 | 31  | 1.0 | top of stream bank                                   |        |
| 62 | 30  | 0.4 | high tide                                            |        |
| 63 | 26  | 0.5 | stream edge                                          |        |
| 64 | 20  | 0.6 |                                                      |        |
| 65 | 12  | 0.7 | high point                                           |        |
| 66 | 4   | 0.4 | rock edge                                            |        |
| 67 | 0   | 0.0 | mid-rock outcrop, water level 3:40 PM                |        |
|    |     |     | more rocks about 100 m out to sea                    |        |

On the template provided and using our written descriptions, draw what we saw in each excavation. Site 1 is already drawn for you to help you get started. Each person in a group should draw one section. Then line the sections up from seaward (site 1) to landward (site 4).


1. How many sand deposits are there in each excavation?

Tsunamis can leave behind sand layers typically less than 25 cm thick.

|                 | Site 1 | Site 2 | Site 3 | Site 4 |
|-----------------|--------|--------|--------|--------|
| Number of       |        |        |        |        |
| tsunami deposit |        |        |        |        |

2. Are there more tsunami deposits at lower or higher excavations?

- 3. Are there more tsunami deposits closer or farther from the ocean?
- 4. What might be the source of other, thicker sand deposits?





**Exercise 2** Drawing stratigraphic sections - Continued

#### Notes from exacavations, Profile 2 (2006 & 2007)

Dushnaya Bay, Simushir Island

#### Site 1

Excavation 96 Vegetation: beach grass & flowers

| Depth (cm) | Description                      |
|------------|----------------------------------|
| 0-2        | gray sand - new in 2007 survey   |
| 2-5        | soil with roots                  |
| 5-60       | gray sand, top has roots         |
| 60-62      | soil                             |
| 62-80      | gray sand                        |
| 80-85      | tephra, 3 layers, gray and brown |
| 85-120     | sand                             |

#### Site 2

Excavation 98 Vegetation: moss, sedges, marsh

| Depth (cm) | Description                                   |
|------------|-----------------------------------------------|
| 0-4        | vegetable mat [soil]                          |
| 4-6        | gray sand                                     |
| 6-13       | marsh soil [peat]                             |
| 13-15      | gray sand                                     |
| 15-25      | marsh soil [peat]                             |
| 25-27      | gray sand                                     |
| 27-34      | tephra, 3 layers, gray and brown              |
| 34-40      | marsh soil [peat]                             |
| 40-44      | clean gray sand                               |
| 44-47      | marsh soil [peat]                             |
| 47-49      | gray sand                                     |
| 49-51      | marsh soil [peat]                             |
| 51-52      | clean sand                                    |
| 52-65      | marsh soil [peat] with 2 thin sand layers     |
| 65-69      | coarse gray cinders, sharp edges              |
| 69-76      | marsh soil [peat]                             |
| 76-78      | sand                                          |
| 78-84      | marsh soil [peat] with 1 thin sand layer      |
| 84-86      | tephra [volcanic ash] [red and black cinders] |
| 86-90      | marsh soil [peat]                             |
| 90-93      | sand                                          |
| 93-94      | marsh soil [peat]                             |
| 94-109     | sand                                          |
| 109-111    | tephra, fine-grained, gray                    |
| 111-114    | sand [peaty]; sample of wood for dating       |
| 114-116    | marsh soil [peat], sample for radiocarbon     |



#### **Exercise 2** Drawing stratigraphic sections - Continued

#### Site 3

Excavation 100 Vegetation: grasses, flowers, a few pine shrubs

| Depth (cm) | Description                                |
|------------|--------------------------------------------|
| 0-6        | soil with roots                            |
| 6-10       | soil                                       |
| 10-12      | gray sand                                  |
| 12-20      | tephra, 3 layers, gray & reddish brown     |
| 20-24      | soil                                       |
| 24-25      | gray sand                                  |
| 25-30      | coarse gray cinders                        |
| 30-35      | soil with thin sand layer; charcoal sample |
| 35-38      | tephra, fine gray and orangish             |
| 38-40      | soil                                       |
| 40-43      | sand                                       |
| 43-44      | tephra                                     |
| 44-70      | sand                                       |
| 70-80      | gray cinders                               |
| 80-95      | sand                                       |
| 95-98      | soil                                       |
| 98-115     | sand                                       |
| 115-118    | tephra, yellow sand                        |

#### Site 4

Excavation 102 Vegetation: grasses, flowers, shrubs, near birch

| Depth (cm) | Description                              |
|------------|------------------------------------------|
| 0-6        | soil with roots                          |
| 6-9        | soil, silty gray                         |
| 9-15       | tephra, 3 layers, red-gray and red-brown |
| 15-20      | soil with a little sand                  |
| 20-25      | coarse gray cinders, angular grains      |
| 25-26      | soil                                     |
| 26-28      | tephra, fine, medium gray to reddish     |
| 28-32      | silty soil, possible volcanic ash        |
| 32-33      | fine cinders, tephra                     |
| 33-35      | sily soil, possible volcanic ash         |
| 35-49      | gray cinders, clean, smooth grains       |
| 49-54      | sily soil, possible volcanic ash         |
| 54-59      | tephra,orange-yellow sand                |
| 59-70      | soil, silty                              |
| 70-100     | soil, cimpact                            |

Name: \_

#### **Exercise 3** Correlating tephra layers between stratigraphic sections

Write the description from the excavation notes of each tephra layer next to the corresponding layer on your stratigraphic column. Draw a line between layers that have very similar descriptions (similar thicknesses, color, grain size, etc.). These lines represent timelines. We call these tephras marker tephras. Label the tephra with numbers starting with 1 at the topmost marker tephra.

1. How many marker tephras are in the different sites:

|                             | Site 1 | Site 2 | Site 3 | Site 4 |
|-----------------------------|--------|--------|--------|--------|
| Number of<br>marker tephras |        |        |        |        |

2. The shoreline on this profile has built outward into the sea as time has gone on, so that some land at the seaward sites is younger than the volcanic eruptions that generated some of the tephras.

How many tsunami deposits are located above each tephra layer in each excavation? If the tephra is not present, leave the space blank.

|                | Site 1 | Site 2 | Site 3 | Site 4 |
|----------------|--------|--------|--------|--------|
| Above tephra 1 |        |        |        |        |
| Above tephra 2 |        |        |        |        |
| Above tephra 3 |        |        |        |        |
| Above tephra 4 |        |        |        |        |
| Above tephra 5 |        |        |        |        |

#### **Exercise 3** Correlating tephra layers between stratigraphic sections

Continued

3. What is the thickness of sediment between each tephra layer in each site?

|                | Site 1 | Site 2 | Site 3 | Site 4 |
|----------------|--------|--------|--------|--------|
| Above tephra 1 |        |        |        |        |
| Between 1 & 2  |        |        |        |        |
| Between 2 & 3  |        |        |        |        |
| Between 3 & 4  |        |        |        |        |
| Between 4 & 5  |        |        |        |        |

4. How do the thickness of sand and soil between tephra layers change as you travel inland and uphill?

5. What might be two reasons for the change in thickness of marshy soil/peat along the profile?

Name:

#### Exercise 4 Adding time to your stratigraphic sections

We just received from the lab the results of radiocarbon dating of organic material for our summer's fieldwork. The charcoal in Site 3 is dated to be 900 yrs BP and the wood in Site 2 is 1100 yrs BP. Your volcanology colleagues have chemically identified the 3-layered tephra as being a 200 yrs BP eruption of the local Prevo volcano and the yellow sandy tephra as being from a gigantic eruption of Medvedzhia Volcano ~2000 yrs BP. Add notes on your stratigraphic sections to indicate the age of all these layers.

About how old is the tephra made of gray cinders?

The Kuril Biocomplexity Project: www.kbp.org

Based on all that you now know about the coastal stratigraphy, you can calculate how often tsunamis affect this region. How many tsunami deposits are located between known dates in your stratigraphy? Write an "X" if there are no sediments in a certain age-range in a site.

1. Wrtie the number of sand layers (tsunami deposit) that are in each site (Write an "X" if there are no sediments in a certain age-range in a site).

| Yrs BP              | Site 1 | Site 2 | Site 3 | Site 4 |
|---------------------|--------|--------|--------|--------|
| in the last 250 yrs |        | 3      |        |        |
| 0-1,000             |        |        |        |        |
| 1,000-2,000         |        |        |        |        |
| 0-2,000             |        |        |        |        |

- 2. What is the maximum number of tsunamis per 1000 years we observed?
- 3. What is the maximum number of tsunamis per 2000 years we observed?
- 4. Take the numbers in the chart above, and divide by the time interval to get tsunami frequency: For example, in Site 2, there are three sand layers above the 250-year-old tephra 1 (from Prevo volcano). So the frequency there in that time period was 250 years divided by 3 tsunamis, or about 80 years one tsunami on average per 83 years.

Frequency of tsunami deposits (years)

| Yrs BP              | Site 1 | Site 2 | Site 3 | Site 4 |
|---------------------|--------|--------|--------|--------|
| in the last 250 yrs |        | 83     |        |        |
| 0-1,000             |        |        |        |        |
| 1,000-2,000         |        |        |        |        |
| 0-2,000             |        |        |        |        |

5. What is the frequency of tsunamis (total # of tsunami/total time) for this one particular bay:

Tsunami & Stratigraphy

12

- for low-lying areas (Site 2)? 1 tsunami per \_\_\_\_\_\_ years
- for high areas (Site 3)? 1 tsunami per \_\_\_\_\_ years

Exercise 5 Homework - Continued

- 6. If the average lifespan of a person is 80 years old, how many tsunami would they see in their lifetime?
- 7. How does the frequency of tsunamis you calculated from the Kuril Islands compare with the general frequency on the pacific caost of Washington State (1 large tsunami per 500 years)?

8. How long has the low-lying part of the coastal plain existed? Why are there only young tephra in the seaward excavations?

9. Compare the thickness and thickness variations of tephra and of tsunami deposits in your stratigraphic sections. Where do you find the thickest tsunami deposits and why? Why do tsunami deposits vary in thickness more than tephra layers?



Exercise 5 Homework - Continued

10. You are planning to build a community at Dushnaya Bay. Your community will depend on boats to fish for food. How can you use the information from this exercise to help you plan your village? What would you consider when choosing the site of your village? What frequency of tsunamis do you think is acceptable for a community?