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ABSTRACT Migration estimates are sensitive to definitions of time interval and duration. For example, when does a tourist become a migrant? As a result, harmonizing across different kinds of estimates or data sources can be difficult.
Moreover 1n countries like the United States, that do not have a national registry system, estimates of internal migration typically rely on survey data that can require over a year from data collection to publication. In addition, each survey
can ask only a limited set questions about migration (e.g., where did you live a year ago? where did you live five years ago?). We leverage a sample of geo-referenced Twitter tweets for about 62,000 users, spanning the period between
2010 and 2016, to estimate a series of US internal migration flows under varying time intervals and durations. Our findings, expressed in terms of ‘migration curves', document, for the first time, the relationships between short-term
mobility and long-term migration. The results open new avenues for demographic research. More specifically, future directions include the use of migration curves to produce probabilistic estimates of long-term migration from short-term
(and vice versa) and to nowcast mobility rates at different levels of spatial and temporal granularity using a combination of previously published American Community Survey data and up-to-date data from a panel of Twitter users.
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* What can the internal logic of a given method tell us about migration behavior? Can this logic be
used towards a general model with applications in projection and/or data harmonization?
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RESULTS Below 1s a contour plot generated from our sample of Twitter data. At a series e ran Rt rera 1 rson
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MODELING The next step in our analysis 1s develop a simple
model that can reproduce the kinds of patterns observed in the
contour plot generated from the Twitter data. This work 1s very
preliminary. Using only three parameters in a simple loop in R, we
can simulate data that comes close to reproducing the pattern of
migration estimates from our results. There are obviously some
i1ssues here, namely, the intensity of the rates, but it seems as
though it may be possible to reduce individual level spatial-
temporal data into a set of parameters that summarizes the mobility
and migration patterns captured therein.

of intervals and durations, we estimated whether each user in our data had moved. We then
summed all movers and divided by the number of total users to get a “migration rate” for
each interval-duration patr.
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Interval in weeks

The figure below provides initial confirmation for our hypotheses. At nearly all intervals,
increased duration results in declining migration rate (i.e. a change from warm colors to
cool colors with movement along the x-axis). And at nearly all durations, increased interval
results 1n increasing migration rate (i.e. a change from cool colors to warm colors with
movement along the y-axis).
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More importantly, there appears to be a more subtle pattern within the contour plot. This 1s S ———
make.city <- function(home, away, permanent.stay)({
what we want to explore further.
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city <- NULL
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Estimated Migration Rate by Interval and Duration for (3 in 1:1000){
location <- c¢(1,0) #two location options for each draw at time t
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0.25 away.ct <- 0 #count of the number of times a person is away

Interval in weeks
Miaration Rate

person <- sample(location, 1, prob = c(home, l-home)) #initial location
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for (i in 1:500){

0.20 if (tail(person,l) == location[l]) { #if person was 'home' at t-1
2] 01
iﬁ person <- c(person, sample(location, 1, prob = c(home, l-home)))
m 2 Duration in weeks
< & away.ct <- 0}
. S - 0 . 1 5 é else { Estimated Migration Rate by Interval and Duration
> 5 :
E: 5; away.ct <- away.ct + 1 #away count goes up ﬁ
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E person <- c(person, sample(location, 1, prob = c(away, l-away)))} jﬁ
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