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Abstract. 

This paper shows how measures of uncertainty can be applied to existing population forecasts 

using Estonia  as a case study. The measures of forecast uncertainty are relatively easy to calculate 

and meet several important criteria used by demographers who routinely generate population 

forecasts. This paper applies the uncertainty measures to a population forecast based on the Cohort-

Component Method, which links the probabilistic world forecast uncertainty to demographic 

theory, an important consideration in developing accurate forecasts. We applied this approach to 

world population projections and compared the results to the Bayesian-based probabilistic world 

forecast produced by the United Nations, which we found to be similar but with more uncertainty 

than found in the latter. We did a similar comparison in regard to sub-national proabilistic forecasts 

and found  our results to be similar with Bayesian-based uncertainty measures. These results 

suggest that the probability forecasts produced using our approach for Estonia are consistent with 

knowledge about forecast uncertainty. We conclude that this new method appears to be well-suited 

for developing probabilistic world, national, and sub-national population forecasts. 
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1.  Introduction 

In a seminal paper, Alkema et al. (2015) describe a Bayesian approach that links probabilistic 

uncertainty to a world population forecast based on the Cohort-Component Method (CCM). It 

proceeds by assembling a large sample of future trajectories for an outcome such as the total 

population size. The point projection in a given year is the median outcome of the sample 

trajectories. Other percentiles are used to construct prediction intervals (Alkema et al., 2015: 2). 

More details on this approach are found in Raftery, Alkema, & Gerland (2014), and a general 

overview of probabilistic population forecasting can be found in Raftery & Ševčíková (2023). 

Because the Bayesian approach described by Alkema et al. (2015) is based on the CCM, 

its measures of uncertainty are linked to the “fundamental equation,” whereby a population at a 

given point in time, Pt+k, is equal to the population at an earlier point in time, Pt, to which is added 

the births and in-migrants that occur between time t and time t+k and to which is subtracted the 

deaths and out-migrants that occur during this same time period (Baker et al., 2017: 251–252). 

The fundamental equation is the cornerstone of demographic theory and is the foundation upon 

which the CCM rests (Baker et al., 2017; Burch, 2018). A probabilistic approach to population 

forecasting based on this theoretical foundation yields benefits not found in methods lacking this 

foundation (e.g., Burch, 2018; Land, 1986). This observation is also consistent with one made by 

Swanson et al. (2023), who argue that a given population forecasting method’s strengths and 

weaknesses largely stem from four sources: (1) Its correspondence to the dynamics by which a 

population moves forward in time; (2) the information available relevant to these dynamics; (3) 

the time and resources available to assemble relevant information and generate a forecast; and (4) 

the information needed from the forecast.  
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The Bayes CCM approach comes with strengths. However, it also comes with weaknesses. 

Goodwin (2015) finds Bayesian inference difficult, effortful, opaque, and counter-intuitive. Along 

with the weaknesses described by Goodwin (2015) are implied ones, including being not easy to 

apply or explain and having a low face validity and high production costs in that a Bayes CCM 

approach is very data- and analytically intensive. 

A New Approach 

We describe an approach for constructing uncertainty measures that is relatively simple and linked 

directly to the CCM approach. Importantly, unlike Bayesian inference, we believe it is likely to 

meet important evaluation criteria used by demographers who produce population projections 

(Smith, Tayman, and Swanson, 2013: 301- 322):  Low production costs (particularly staff time);  

easy to apply and easy to explain; a high level of face validity; and intuitive. In describing this new 

approach, we use national population projection for Estonia found at the U.S. Census Bureau’s 

International Data Base (U.S. Census Bureau, 2020). Before showing these results, we also employ 

the IDB’s world population projections in the course of generating uncertainty information that we 

compare to the uncertainty information developed by the United Nations for its world population 

projections (Alkema et al. 2015). The approach we suggest employs the ARIMA (Auto-Regressive 

Integrated Moving Average) Time Series method in conjunction with work by Espenshade and 

Tayman (1982) whereby we can translate the uncertainty information found in the ARIMA 

method’s forecast to the population forecast provided by the CCM approach.      

In the remainder of the paper, we describe the ARIMA model along with the source data 

we use in this paper and then show how to translate its uncertainty information to a CCM forecast. 

Following the evaluation of the uncertainty information generated for the world as a whole, we 

then generate an ARIMA forecast to 2050 for Estonia and translate its 95% confidence intervals  
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to national population projections found at the International Date Base (IDB) of the U.S. Census 

Bureau (2020). We do not describe the CCM approach in any detail because it is so widely known 

and used (Smith, Tayman, and Swanson, 2013) 

The ARIMA Model 

At its heart, the ARIMA (Auto-Regressive Integrated Moving Average) time series model is a 

regression-based projection method. It was popularized by Box and Jenkins (1976) and has been 

used in the analysis and projection of business, economic, and demographic variables. Examples 

of its use in demographic forecasting include McNown et al. (1995); Pflaumer (1992); Swanson 

(2019); Tayman, Smith, and Lin (2007); and Zakria and Muhammad (2009).   

 As discussed by Smith, Tayman, and Swanson (2001: 172-176), an ARIMA model attempts 

to uncover the stochastic processes that generate a historical data series. The mechanism of this 

stochastic process is described—based on the patterns observed in the data series—and that 

mechanism forms the basis for developing projections. Up to three processes can describe the 

stochastic mechanism: autoregression, differencing, and moving average. The autoregressive 

process has a memory in the sense that it is based on the correlation of each value of a variable 

with all preceding values. The impact of earlier values is assumed to diminish exponentially over 

time. The number of preceding values explicitly incorporated into the model determines its 

“order.”  For example, in a first-order autoregressive process, the current value is explicitly a 

function only of the immediately preceding value. However, the immediately preceding value is 

also a function of the one before it, which is a function of the one before it, and so forth. 

Consequently, all preceding values influence current values, albeit with a declining impact. In a 

second-order autoregressive process, the current value is explicitly a function of the two 

immediately preceding values; again, all preceding values have an indirect impact.  
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 The differencing process is used to create a stationary time series (i.e., one with constant 

differences over time). A stationary time series is very important for the construction of ARIMA 

models. When a time series is non-stationary, it can often be converted into a stationary time series 

by calculating differences between values. First differences are usually sufficient, but second 

differences are occasionally required (i.e., differences between differences). Logarithmic and 

square root transformations can also be used to convert non-stationary to stationary time series. 

 The moving average represents a “shock” to the system or an event that has a substantial 

but short-lived impact on the time series pattern. This impact has a limited duration, and then time 

series trends return to normal. The order of the moving average process defines the number of time 

periods affected by the shock. The most general ARIMA model is usually written as ARIMA (p, d, 

q), where p is the order of the autoregression, d is the degree of differencing, and q is the order of 

the moving average. (ARIMA models based on time intervals of less than one year may also 

require a seasonal component.)  The first and most subjective step in developing an ARIMA model 

is to identify the values of p, d, and q. The d-value must be determined first because a stationary 

series is required to properly identify the autoregressive and moving average processes. The value 

of d is the number of times one has to difference the series to achieve stationarity (usually 0 or 1, 

but occasionally 2). The p- and q-values are also relatively small (0, 1, or—at most—2). The 

patterns of the autocorrelation (ACF) and partial autocorrelation functions (PACF) are used to find 

the correct values for p and q. For example, a first-order autoregressive model [ARIMA (1, 0, 0)] 

is characterized by an ACF that declines exponentially and quickly and a PACF with a significant 

value only at lag 1. Once p, d, and q are determined, maximum likelihood procedures are used to 

estimate the parameters of the ARIMA model. The final step in the estimation process is model 

diagnosis. An adequate ARIMA model will have random residuals, no significant values in the 
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ACF, and the smallest possible values for p, d, or q. After a successful diagnosis is completed, the 

ARIMA model is ready to use.  

 As alluded to earlier, underlying the Espenshade-Tayman method is the idea that there is 

a sample taken from a population of interest. In this case, the ARIMA results represent the sample 

and the CCM forecasts represent the population. This interpretation is derived from the idea of a 

“superpopulation” (Hartley and Sielken, 1975; Sampath, 2005; Swanson and Tayman (2012: 32-

33). This concept can be traced at least back to Deming and Stephan (1941) who observed that 

even a complete census, for scientific generalizations, describes a population that is but one of the 

infinity of populations that will result by chance from the same underlying social and economic 

cause systems. It is a theoretical concept that we use to simplify the application of statistical 

uncertainty to a population forecast that is considered a statistical model in this context. This 

approach is conceptually and mathematically different from the classical frequentist theory of 

finite population sampling (Hartley and Sielken (1975), but as pointed out by Ding, Li, and 

Miratrix (2017), in practical terms, these two approaches result in identical variance estimators. 

As such, we believe that our approach is on solid statistical ground. Before moving on, we note 

that the use of the Espenshade-Tayman method (1982) here is not new. In addition to being 

employed by Espenshade and Tayman (1982), it has been used by Swanson (1989) and Roe, 

Swanson, and Carlson (1992) in demographic applications.                                                                                                                          

2. Methods and Data 

As earlier noted, the approach we suggest employs the ARIMA (Auto-Regressive 

Integrated Moving Average) Time Series method in conjunction with work by Espenshade and 

Tayman (1982), whereby we can translate the uncertainty information found in the ARIMA 

method’s forecast to the population forecast provided by the CCM approach. We note that the 
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patterns of the autocorrelation (ACF) and partial autocorrelation functions (PACF) were used to 

find the correct values for p and q (Brockwell and Davis, 2016: Chapter 3). The ARIMA models 

we describe for the world as a whole and for Estonia had random residuals and the smallest 

possible values for p, d, or q, as determined by the Ljung-Box test (Ljung and Box, 1979). We 

chose an “adequate” ARIMA model using these criteria for both the world as a whole and 

Estonia. We note that there may be other versions that also are “adequate” and that further 

refinement of the selection process can be done (e.g., using the augmented Dickey-Fuller test 

(Dickey and Fuller, 1979) to identify the amount of differencing required to achieve a stationary 

time series). Because our aim here is heuristic not definitive, we did not pursue further 

refinement of the ARIMA model we present beyond determining it to be adequate (See the 

Appendix). We note, however, that if one intends to use our approach, the selection of an 

ARIMA model needs to be consistent with guidelines described here and eslewhere (e.g., Box and 

Jenkins, 1976; Brockwell and Davis, 2016; Hyndman and Athanasopoulos, 2021; Smith, Tayman, and 

Swanson, 2013; Swanson and Tayman, 2024). 

Before describing the new method, we first clarify our use of the term “confidence interval” 

regarding forecast uncertainty. It is more common to use the term “forecast interval” or “prediction 

interval” in the context of forecasting because a “confidence interval,” strictly speaking, applies to 

a sample (Swanson & Tayman, 2014: 204). However, underlying the approach we describe herein 

is the concept of a “superpopulation,” which, as discussed later, represents a population that is but 

one sample of the infinity of populations that will result by chance from the same underlying social 

and economic cause systems (Deming & Stephan, 1941). Viewing a forecast as a sample leads us 

to use the term “confidence interval” rather than a forecast or prediction interval.  
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3. Estonian Population Forecast 

We use annual world historical data of total population and land area in square meters to compute 

population density annually from 1950 to 2020 found at the IDB site to implement the ARIMA 

(Box-Jenkins) model (see Appendix, Exhibit 1 for the report on the model we use) found in the 

NCSS statistical package (NCSS, 2024) and launch from the annual world forecasts found at the 

same site for 2021-2060. We use “density” because the Espenshade-Tayman (1982) method for 

translating uncertainty information does so from an estimated “rate,” which in this case is the 

“rate” of population density. Thus, the 95% confidence intervals generated by the ARIMA world 

“density” forecasts are translated to the CCM-based world population forecast. Other 

denominators could be used in developing such a “rate, such as the ratio of the population to 

housing units. However, using the land area as the denominator provides a virtually constant 

denominator over time, thereby reducing the effort in assembling the “rate” data. It also serves as 

a stabilizing element regarding the use of ARIMA in that it dampens the effect of short-term 

population fluctuations more effectively than, say, housing units, which also can fluctuate over 

time and not always in concert with population fluctuations. As should be obvious, the data 

assembled to develop the ARIMA density forecast should encompass the base data used to develop 

the population projection in terms of the total population numbers. The case study we present 

meets this condition in that the annual ARIMA model covers the period from 1950 to 2020 and 

the  IDB population projection of Estonia is launched from 2020 and employs earlier data to 

develop the base data used in the launch. 

 Here is an example of this process using the 2050 Estonian forecast data at the IDB site.  

Let P = forecasted Estonian population (at time t) obtained from the forecast, 

 

Let D = forecasted Estonian population density obtained from ARIMA at time t, and 
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Let A = land area of Estonia (42,388 square kilometers). 

 

The 2050 ARIMA density forecast shows 14.5436, 25.2596, and 35.3582 persons per square 

kilometer, respectively, for the land area of the world as a whole (95% Lower Limit of 

forecasted D, forecasted D, and 95% Upper Limit of forecasted D, respectively). 

 

The relative widths of the Upper and Lower Limits are -0.4242 and 0.4242, respectively. 

 

The 2050 Estonia forecast found at IDB is 970,580 

 

Multiplying 970,580 by -.4242 and adding this product to 970,580 yields 558,826, the 95% 

Lower Limit, and adding the product 979,580× ,4224 to 9970580 yields 1,382,334, the 95% 

Upper Limit of the 2050 Estonian population forecast found at IDB.  

 

Putting it all together, we can state that we are 95% certain that the 2050 Estonian forecast 

found at IDB is between 558,826 and 1,382,334 

 

                         (TABLES 1.A THROUGH 1.D ABOUT HERE) 

The steps in going from Tables 1.A through 1.D are those described earlier. Once at Table 

1.D, one can see that as forecast moves from 2030 (1,138,017 with lower and upper 95% 

confidence interval bounds of 1,043,514 and 1.232,524, respectively) to 2050, the interval 

widths increase over time, with a forecast of 970,580 and lower and upper 95% confience 

interval bounds of 558,826 and 1.382,334, respectively. Like the projections described by 

Statistics Estonia (2024), the probabilistic forecasts based on the IDB porjections show a 

decline in population. 

4. Discussion of the Probabilistic Estonian Population Forecast 

As is the case with the Bayesian approach described by Alkema et al. (2015), the new approach 

we propose can be linked directly to the CCM method (as well as forecasts produced by other 

methods such as the Cohort Change Ratio (CCR) approach, which is algebraically equivalent to 

the CCM approach, but requires less input (Baker et al., 2017)). Unlike the approach found in 

Swanson and Beck (1994), neither the CCM nor the CCR approach is inherently conjoined with a 
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method for generating statistical uncertainty. Thus, we believe this linkage represents a step 

forward on the path to generating probabilistic forecasts based on the fundamental population 

equation. Notably, the ARIMA method is widely available in the software packages generally used 

by demographers. 

The approach we propose does not produce the uncertainty intervals by age and gender, 

births, death, and migration as does the Bayes CCM approach described by Alkema et al. (2015), 

Yu et al. (2023: 934) and the CCR approach discussed by Swanson and Tayman (2014). However, 

neither the Bayes CCM nor our approach take into account uncertainty in the input data 

themselves. However, as Yu et al. (2023: 934) implied, these are not likely to be among the most 

important sources of uncertainty for data in the United States and other countries where population 

forecasts are routinely produced. 

Regarding our approach not providing uncertainty intervals by age and gender, Deming’s 

(1950: 127-134) “error propagation” was used to translate uncertainty in age group intervals found 

in the regression-based CCR forecasts reported by Swanson and Tayman (2014) to the total 

populations in question. In different forms, “error propagation” has been used by Alho and Spencer 

(2005), Espenshade and Tayman (1982), and Hansen, Hurwitz, and Madow (1953), among others. 

It may be possible to reverse-engineer error propagation and develop uncertainty measures by age 

and gender using our approach. The validity of this could be explored to determine if it is viable. 

As an approximation, one could generate age uncertainty intervals by controlling “low” and “high” 

numbers in a given forecast series to their corresponding 95% lower and upper limits, respectively, 

found using our proposed approach.  

It is important to keep in mind that we used information found at the U.S. Census Bureau’s 

International Data Base to generate the probabilistic population forecast for Estonia, which was a 
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convenient source because all of the information we needed for both the world as a whole and 

Estonia was in a common source. The projections generated by the UN for the world as a whole 

are similar but not the same as those found at the IDB site. Similarly, population projections 

generated in Estonia (see, e.g., Maamägi, 2007; Statistics Estonia, 2024) vary from those found at 

the IDB site. In this regard, we note again that our purpose here is heuristic rather than definitive.  

With these points in mind, however, it is clear that like the probabilistic world population forecasts 

the uncertainty boundaries for the Estonian probabilistic forecasts become wider over time, an 

important feature consistent with knowledge about forecast uncertainty (Swanson, Tayman, and 

Cline, 2024). In addition, the uncertainty boundaries at each year are wider than those for the 

corresponding world population forecasts, another important feature consistent with knowledge 

about forecast uncertainty in that there is more uncertainty found in forecasts of a small population 

than in a large population, ceterus paribus (Swanson, Tayman, and Cline, 2024). 

We (Swanson and Tayman, 2025) applied this approach to world population projections 

and compared the results to the Bayesian-based probabilistic world forecast produced by the 

United Nations (Alkema et al., 2015; Raftery, Alkema, and Gerland, 2014, United Nations, 2022, 

2024), which we found to be similar but with more uncertainty than found in the latter. We 

(Swanson and Tayman, 2024) also used historical data produced by the Forecasting Division of 

the Office of Financial Management  (Washington, 2024) to implement the ARIMA model, 

which we then applied to the medium series of the “Growth Management Act” projections 

produced by the Office of Financial Management (Washington, 2022).  

We examined the range of uncertainty in the county forecasts by analyzing half-widths 

and compared the half-widths of their ARIMA-based intervals to half-widths produced using a 

Bayesian approach by Yu et al. (2023, who discussed their results for the state as a whole and  to 
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three counties,  Ferry, King, and Whitman. The ARIMA-based half-widths for Ferry county (a 

county with a very small population, approximately 7,500 currently) were found to be wider than 

those for the Bayes CCM approach at each of the three horizon lengths, 10, 20, and 30 years. For 

King county (the county with the highest current population of Washington’s counties, 

approximately 2.7 million), the ARIMA-based half-widths were slightly narrower at 10 years 

than those found for the Bayes CCM approach and substantially narrower at 20 and 30 years. For 

Whitman County (which has a current population of approximately 48,000, of which 27,000 or 

so are students at Washington State University), the Bayes-based CCM produced narrower 

widths at each of the three horizon lengths. However, we noted that Yu et al. (2023: 921-922) 

held the age groups associated with college attendance constant in counties such as Whitman 

where these populations have a large impact on the age structure of the county as a whole. 

Considering Washington State as a whole (with a population of approximately 7.9 million), we 

found that the half-widths generated by the Bayes CCM were narrower for the 10- and 20-year 

horizon than the ARIMA-based half-widths, while the latter produced a narrower half-width for 

the 30-year horizon length. Importantly, for all three counties and the state as a whole, the 

ARIMA-based half-widths increased over time in a manner consistent with the Bayes CCM half-

widths. We (Swanson and Tayman, 2024) concluded that the ARIMA-based  approach produces 

uncertainty measures for county population forecasts that are not dissimilar to those produced by 

the Bayes CCM approach and that neither produced intervals so wide as to be useless, a point 

brought up by Swanson and Tayman (2016) in an earlier examination of forecast uncertainty. In 

regard to this point, however, Swanson and Tayman (2014)  argued that 95% CIs are likely too 

wide to be of use and recommended that 66% CIs be considered. Following this 
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recommendation, the following table (1.F)  shows the results for Estonia using 66% CIs, which 

in our opinion are preferable to the 95% CIs shown earlier. 

 

                         (TABLE 1.F ABOUT HERE) 

5. Conclusion 

Smith, Tayman, and Swanson (2002: 373) opined that future research should focus increasingly 

on measuring uncertainty in population forecasts. Machine learning and AI may be significant in 

these endeavors (Baker, Swanson, and Tayman, 2023). They noted that while such research may 

not directly improve forecast accuracy, it will enhance our understanding of the uncertainty 

inherent in population forecasts. They stated that this change would imply a shift from 

“population projections” to “population forecasts,” a guideline we have followed in this paper. 

 In closing, we argue that the approach we propose and have described in this paper is 

well-suited for generating not only probabilistic world and national forecasts, but also 

subnational population forecasts where these forecasts are routinely produced. Because it can be 

applied to both the CCM and the CCR approaches, our method for producing forecast 

uncertainty information provides a path to a reasonable level of forecast accuracy as identified by 

Swanson et al. (2023). It also has the potential to optimize forecast utility, which is in accordance 

with the “triple constraint perspective” that underlies our approach. None of this is meant to 

imply that forecast uncertainty measures derived from ARIMA models using the Espenshade-

Tayman method are more “accurate” than those generated from a Bayesian method. Rather, the 

findings herein suggest that our approach has a higher level of utility than a Bayesian approach 

while providing forecast intervals that are similar in width relative to both population size and 

forecast horizon length.  As such, it offers a viable alternative to the Bayesian approach in that 
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our results indicate that it produces similar measures of uncertainty, is simpler to implement, 

and, at this point in time, is likely to be more accessible to many of those who have been tasked 

to produce formal measures of uncertainty for their population forecasts. 
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  Table 1.A ESTONIA POPULATION FORECAST  

       

NATION 2030 2040 2050 

ESTONIA 

         
1,138,017  

         
1,052,590            970,580  

 

Table 1.B ARIMA DENSITY FORECAST (ABSOLUTE)         

2030   2040   2050    

FORECAST LL95% UL95% FORECAST LL95% UL95% FORECAST LL95% UL95% 

27.1587 24.9034 29.4141 25.9782 19.6344 32.322 25.2596 14.5436 35.9756 

 

Table 1.C ARIMA DENSITY FORECAST (RELATIVE)       

2030  2040  2050   

LL95% ULP5% LL95% UL95% LL95% UL95% 

-0.08304153 0.083045212 -0.244197058 0.244197058 -0.424234746 0.424234746 

 

 

 

 

 

 

 

 

TABLE 1.D 2030, 2040, AND 2050 NATIONAL POPULATION FORECASTS AND THEIR  95% UNCERTAINTY  INTERVALS

2030 2040 2050

NATION FORECAST LL95% UL95% FORECAST LL95% UL95% FORECAST LL95% UL95%

ESTONIA 1,138,017 1,043,514 1,232,524 1,052,590 795,551 1,309,629 970,580 558,826 1,382,334

TABLE 1.F 2030, 2040, AND 2050 NATIONAL POPULATION FORECASTS AND THEIR  66% UNCERTAINTY  INTERVALS

2030 2040 2050

NATION FORECAST LL66% UL66% FORECAST LL66% UL66% FORECAST LL66% UL66%

ESTONIA 1,138,017 1,090,221 1,185,813 1,052,590 922,069 1,183,111 970,580 760,935 1,180,225
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Appendix. ARIMA Report 

 
Dataset C:\...\ESTONIA\ESTONIA AREA POP DENSITY 1950-2023.NCSS 
Variable DENSITY-TREND 
 
Minimization Phase Section 
───────────────────────────────────────────────────── 
Itn Error Sum  
No. of Squares Lambda AR(1)    
0 5.484014 0.1 0.1    
1 0.6494514 0.1 0.8593766    
2 0.5727309 0.04 0.9553774    
3 0.5724399 0.016 0.9612668    
4 0.5724401 0.0064 0.9616405    
5 0.57244 0.064 0.9616203    
6 0.5724397 0.64 0.9614962    
Normal convergence. 
 
 
Model Description Section 
───────────────────────────────────────────────────── 
Series DENSITY-TREND 
Model Regular(1,1,0)    Seasonal(No seasonal parameters) 
Trend Equation (30.80116)+(0.02418899)x(date) 
 
Observations 74 
Missing Values None 
Iterations 6 
Pseudo R-Squared 99.915050 
Residual Sum of Squares 0.5724397 
Mean Square Error 0.007950552 
Root Mean Square 0.08916587 
 
 
Model Estimation Section 
────────────────────────────────────────────────────── 
Parameter Parameter Standard  Prob 
Name Estimate Error T-Value Level 
AR(1) 0.9614962 0.03059133 31.4303 0.000000 
 
 
Forecast and Data Plot 
──────────────────────────────────────────────────────── 
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Autocorrelations of Residuals of DENSITY-TREND 
────────────────────────────────────── 
Lag Correlation Lag Correlation Lag Correlation Lag Correlation 
1 0.400167 13 0.090163 25 0.063520 37 0.086111 
2 -0.075988 14 0.025157 26 0.077727 38 0.149888 
3 -0.016163 15 -0.128197 27 0.028183 39 0.157346 
4 -0.024545 16 -0.114217 28 -0.072754 40 -0.009002 
5 -0.142687 17 0.033592 29 -0.084807 41 -0.146874 
6 -0.141474 18 0.055798 30 -0.010600 42 -0.043296 
7 -0.075700 19 0.055508 31 -0.038922 43 -0.023557 
8 -0.085602 20 0.101835 32 -0.081575 44 0.000727 
9 -0.043228 21 0.010672 33 -0.035905 45 0.023018 
10 -0.011662 22 -0.130101 34 -0.007455 46 0.025295 
11 -0.040070 23 -0.169485 35 -0.021691 47 0.017776 
12 0.002167 24 -0.054299 36 -0.030857 48 0.007455 
Significant if |Correlation|> 0.232495 
 
 
Autocorrelation Plot Section 
──────────────────────────────────────────────────── 
 

 
 

 
 


