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Abstract
Population forecasts produced by governments at all levels are used in the public sector, the private sector, 
and by researchers. They have been primarily produced using deterministic methods. This paper shows how 
a method for producing measures of uncertainty can be applied to existing subnational population forecasts 
while meeting several important criteria, including the concept of utility. The paper includes an assessment of 
the efficacy of the method by: (1) examining the change in uncertainty intervals it produces by population size 
and population growth rate; and (2) comparing the width and temporal change of the uncertainty intervals 
it produces to the width and temporal change of uncertainty intervals produced by a Bayesian approach. The 
approach follows the logic of the Espenshade-Tayman method for producing confidence intervals in conjunc-
tion with ARIMA equations to construct a probabilistic interval around the total populations forecasted from 
the Cohort Component Method, the typical approach used by demographers. The paper finds that population 
size and population growth rate are related to the width of the forecast intervals, with size being the stronger 
predictor, and the intervals from the proposed method are not dissimilar to those produced by a Bayesian ap-
proach. This approach appears to be well-suited for generating probabilistic population forecasts in the United 
States and elsewhere where these forecasts are routinely produced. It has a higher level of utility, is simpler, 
and is more accessible to those tasked with producing measures of uncertainty around population forecasts.
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INTRODUCTION
As Wu et al. (2023) observe, population forecasts 
produced by governments at all levels are used in the 
public sector, the private sector, and by researchers. 
However, until recently, these widely used forecasts 
have primarily been produced using deterministic 
methods in conjunction with the Cohort Compo-
nent Method (CCM) and its algebraic equivalent, 
the Cohort Change Ratio (CCR) approach (see Ap-
pendix A) − a practice consistent with an observa-
tion made by Baker, Alcantara, and Ruan (2011: 10): 
“Demographic modeling occurs without considera-
tion of statistical uncertainty.” They noted that this 
oversight applied specifically to population forecast-
ing. Regarding subnational forecasting, we find that 
the exception to their observation consists of five 
studies that have presented methods for develop-
ing probabilistic population forecasts: Cameron and 
Poot (2011); Swanson and Beck (1994); Swanson and 
Tayman (2014); Wilson (2012); and Yu et al. (2023). 
Notably, four of these studies link probabilistic uncer-
tainty to the CCM approach (Cameron – Poot, 2011; 
Wilson, 2012; Yu et al., 2023) or the CCR approach 
(Swanson – Tayman, 2014). The linkage found in 
these four studies is significant because it means that 
the measures of uncertainty are linked to the funda-
mental demography equation, whereby a population 
at a given point in time, Pt+k, is equal to the popula-
tion at an earlier point in time, Pt, to which is added 
the births and in-migrants that occur between time 
t and time t+k, and to which is subtracted the deaths 
and out-migrants that occur during this same time 
period (Baker et al., 2017: 251–252).

The fundamental equation is the cornerstone of 
demographic theory (Canudas-Romo et al., 2008; 
Swanson et al., 2023) and the foundation upon which 
the CCM rests (Baker et al., 2017: 23–24; Burch, 2018). 
A probabilistic approach to population forecasting 
based on this theoretical foundation yields benefits not 
found in methods lacking this foundation (e.g., Burch, 
2018; Land, 1986). This observation is also consistent 
with one made by Swanson et al. (2023), who argue 
that a given method’s strengths and weaknesses largely 
stem from four sources: (1) its correspondence to the 
process by which a population moves forward in time; 
(2) the information available relevant to these dynam-
ics; (3) the time and resources available to assemble 

relevant information and generate a forecast; and (4) 
the information needed from the forecast.

Like their counterparts in the private sector and at 
the national level, state and local demographers are 
constrained by resources and time. Because of these 
constraints, Tayman and Swanson (1996) pointed out 
the importance of considering the concept of utility in 
producing population forecasts. Swanson, Burch, and 
Tedrow (1996) added more specificity to this issue by 
introducing the “triple constraint” perspective, which 
can be applied to population forecasting:

1. �Performance specification – the explanatory/
predictive precision sufficient to support a given 
decision-making situation. 

2. �Time – the schedule requirements under which 
the performance specification must be accom-
plished.

3. �Resources – the budget requirements under 
which the performance specification must be 
accomplished.

The performance specification is directly related to 
the four sources identified by Swanson et al. (2023), 
as well as the strengths and weaknesses of a given ap-
proach to forecasting, such as the time and resource 
specifications. 

It is important to note that population forecasting 
is considered to be part of applied demography (Swan-
son – Burch – Tedrow, 1996), where problems come 
not from demographic theory or empirical research 
traditions but from a person (or set of persons) in 
government, business, or some other organizational 
sector who needs demographic analysis to assist him 
or her in making good, informed decisions. A corollary 
identified by Swanson, Burch, and Tedrow (1996) is that 
the decision-making process is client-driven in that 
the definition of the problem and an adequate answer 
are determined primarily by the decision-maker, not 
by the demographer or demographic research tradi-
tions. This corollary means that the primary audience 
for population forecasts comprises decision-makers 
and their constituents, not professors and academic 
researchers − two groups to which the triple constraint 
perspective applies, but differently. Professors and aca-
demic researchers pursue ever-improved knowledge, 
more precise and reliable measurements, better theo-
retical systems, and more refined techniques. They see 
costs and time as constraints to overcome to achieve 
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high performance specification levels. Decision-mak-
ers are interested in acquiring the minimal amount 
of information needed to make correct decisions. 
They want to optimize the performance specification 
within the constraints generated by time and resource 
limitations. This latter view underlies the approach to 
generating uncertainty information we present here.

Turning to the five exceptions, we start with Cam-
eron and Poot (2011), who developed a stochastic 
method for subnational population forecasts. They 
applied it to five demographically distinct administra-
tive areas within the Waikato region of New Zealand. 
The uncertainty measures found in this approach 
are generated around the components of population 
change, which means this approach is linked to the 
fundamental population equation. Their results are 
compared to official subnational deterministic fore-
casts, which revealed the instability of migration as 
a component of population change.

Swanson and Beck (1994) proposed a lagged re-
gression-based method to generate short-term county 
population forecasts. It is based on modifying the 
ratio-correlation method of population estimation 
and partly on earlier work by Swanson (1989). The 
modified ratio-correlation method produces forecasts 
without requiring substantial data and intensive in-
tellectual labor inputs. Tests found that this approach 
delivered accurate forecasts (Swanson – Beck, 1994).

Swanson and Tayman (2014) examined state-lev-
el forecasts using a lagged regression approach in 
conjunction with the Cohort Change Ratio Method 
(CCR). As Baker et al. (2017) discuss, the CCR ap-
proach is algebraically equivalent to the CCM ap-
proach but uses cohort change ratios to capture mor-
tality and migration; and to capture fertility, it uses 
child-adult ratios. This equivalency means the CCR 
approach is linked to the fundamental population 
equation. Swanson and Tayman (2014) found that the 
uncertainty measures associated with their lagged-
regression CCR approach were not too wide in that 
they captured reported totals and age groups in ac-
cordance with expectations.

Wilson (2012) used the empirical approach to devel-
op uncertainty measures for the subnational forecasts 
he constructed in Australia. It is based on empirical 
analyses of errors from past forecasts (Smith – Tayman 
– Swanson, 2013; Stoto, 1983). Although not a formal 

method for generating uncertainty measures, it is valid 
and Wilson applied it to CCM forecasts, which means 
that they are linked to the fundamental population 
equation. Importantly, Wilson’s application provides 
uncertainty measures for age groups. This work has 
a precedent in which Wilson (2005) applied time series 
methods and judgment to develop uncertainty meas-
ures for New Zealand’s national population forecasts.

Using the 39 counties of Washington state as an 
example, Yu et al. (2023) show that a Bayesian ap-
proach can be used in conjunction with the CCM to 
provide probabilistic county-level population fore-
casts. Like Wilson (2012), this approach measures 
uncertainty for age groups. To our knowledge, this 
is the first application of Bayesian inference to the 
CCM approach for projecting county populations. It 
is a seminal contribution. However, using experience 
as a guide, we also believe that it will take time for this 
approach to be widely adopted by the state and local 
demography communities, in part because Bayesian 
inference can be complex, effortful, opaque, and even 
counter-intuitive (Goodwin, 2015).

This paper adds to the sparse literature on sub-
national probabilistic population forecasting that has 
been reviewed here by describing a new approach for 
constructing uncertainty measures that is relatively 
simple and can be linked directly to either the CCM 
or CCR approach. Importantly, unlike Bayesian infer-
ence, we believe this new approach is likely to meet 
essential evaluation criteria routinely used by state and 
local demographers (Smith – Tayman – Swanson, 2013: 
301–322), such as low production costs (particularly 
staff time), application and explanation ease, a high 
level of face validity, and intuitive. The approach we 
propose employs the ARIMA method in conjunc-
tion with work by Espenshade and Tayman (1982) to 
translate the uncertainty information in the ARIMA 
method’s forecast to the population forecast provided 
by the CCM approach.

DATA

Following Yu et al. (2023), we use data for the 39 
Washington state counties to demonstrate our new 
approach to placing probabilistic intervals around 
forecasts produced using CCM. We also evaluate 
our new approach by comparing its results to those  
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reported by Yu et al. (2023). Figure 1 provides a map 
of Washington’s counties. According to the 2020 de-
cennial census, Washington state had a population of 
7.7 million, the thirteenth largest state in the U.S. Its 
growth rate between 2010 and 2020 was 14.6%, the 
seventh fastest growth rate among states. Washing-
ton’s 39 counties reflect a broad range of population 
sizes and growth rates and provide a diverse data 
set for evaluating the new approach, which places 
intervals around CCM forecasts. According to the 

2020 decennial census, the average county popu-
lation was 197,571, ranging from 2,286 in Garfield 
County to 2,267,675 in King County. Forty-six per-
cent of the counties were smaller than 50,000, and 
only three counties exceeded 500,000 persons. The 
average county growth rate from 2010–2020 was 
9.5%, ranging from –4.9% in Ferry County to 23.8% 
in Franklin County. Eight counties (20%) experienced 
growth rates below 5%, and seven counties (18%) ex-
perienced growth rates above 15%.

We use annual intercensal estimates from 1960 to 
2020 produced by the Forecasting Division of the Of-
fice of Financial Management (OFM) to implement 
the ARIMA model (Washington, 2024). Intercensal 
estimates are developed between census years and 
are considered more accurate than other estimates 
because either decennial census counts by the U.S. 
Census Bureau or state-certified special census counts 
on both sides bracket them. The intercensal estimates 
are based on the housing unit method (e.g., Swan- 
son – Tayman, 2012: 137–164). The housing unit meth-

od assumes that the change in the number of people 
varies with the change in the number of housing units 
and counts of the population living in group quarters 
facilities, as reported to OFM by local governments 
and institutions over the decade.

We launched the forecasts from 2020 to match 
the launch year (2020) of the 2022 Growth Man-
agement Act (GMA) county forecasts (Washington, 
2022). These GMA forecasts contain scenario-based, 
not probability-based, intervals around the medium 
forecast and have a 30-year forecast horizon to 2050. 

Figure 1  Washingon State Counties

Source: Washington Association of County Officials (https://countyofficials.org/192/County-Map)
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Population forecasts for the GMA are produced every 
five years and developed with county officials. Direct-
ed by state statute (House Bill 1241), OFM prepares 
a reasonable range of possible population growth for 
Washington state’s counties. County officials, also 
by law, are responsible for selecting a 20-year GMA 
planning target from within the range of high and low 
prepared by OFM. 

Our approach follows the logic of the Espenshade-
Tayman method (Espenshade – Tayman, 1982) for 
producing confidence intervals around postcensal 
population estimates by age. Their method employs 
time-series regression equations to construct proba-
bilistic intervals around age-specific death rates over 
a postcensal estimation period. These results, com-
bined with the number of deaths during this period 
and the most recent census counts, were translated 
into confidence intervals around the corresponding 
estimated age structure. Our use of the Espenshade-
Tayman method is not unique. It has been employed 
by Swanson (1989) and Roe, Swanson, and Carlson 
(1992) in demographic applications.

Our approach uses ARIMA models to generate 
confidence intervals around population densities.3) 
We use “density” because the Espenshade-Tayman 
(1982) method for translating uncertainty informa-
tion does so from an estimated “rate,” which in this 
case is the “rate” of population density. Other “rates” 
could be used, such as the ratio of the population to 
the number of housing units. However, using the land 
area as the denominator provides a virtually constant 
denominator over time, thereby reducing the effort in 
assembling the “rate” data. It also serves as a stabilizing 
element regarding the use of ARIMA in that it damp-
ens the effect of short-term population fluctuations 
more effectively than, say, housing units, which also 
can fluctuate over time and not always in concert with 
population fluctuations.

Three steps are needed to generate a confidence 
interval around the GMA point forecast produced by 

the CCM, which we label here as “GMAPOP.” First, 
ARIMA models produce a point forecast for popula-
tion density (which we label here as “PFPD”), along 
with a lower limit (which we label here as “LLPD”), 
and an upper limit (which we label here as “ULPD”) 
for each county and Washington state. Second, rela-
tive differences (proportions) are determined for each 
lower limit (which we label here as “RLLPD”) and 
upper limit (which we label here as “RULPD”). These 
relative differences are found as follows:

RLLPD = (LLPD – PFPD) / PFPD and	 (1)
RULPD = (ULPD – PFPD) / PFPD.	 (2)
The third and final step translates the confidence 

intervals generated by the ARIMA county “density” 
forecasts to the medium GMA county forecasts to 
produce confidence intervals around the CCM point 
total population forecast (GMAPOP):

�LLPOP = GMAPOP – (RLLPD × GMAPOP) 
and	 (3)
UUPLP = GMAPOP + (RULPD × GMAPOP).	(4)
Appendix B contains the three different forecasts 

used in the ARIMA approach to measuring uncer-
tainty in forecasts for Washington state and its 39 
counties, and the Appendix B includes a numerical 
example of equations 1 through 4. Forecasts for 2030, 
2040, and 2050 (10-to-30-year horizon lengths) are 
shown in three tables: Table B1 contains the ARIMA 
population density forecast and 95% confidence limits; 
Table B2 contains the GMA point forecast; and Table 
B3 includes the GMA point forecast and the translated 
95% confidence limits.

Underlying the Espenshade-Tayman method is 
the idea that a sample is taken from a population of 
interest. In this case, the ARIMA results represent the 
sample, and the CCM forecasts represent the popula-
tion. This interpretation is derived from the idea of 
a “superpopulation” (Hartley – Sielken, 1975; Sam-
path, 2005; Swanson – Tayman, 2012: 32–33). This 
concept can be traced back to Deming and Stephan 
(1941), who observed that even a complete census, 

3) �It is more common to use the term “forecast interval” or “prediction interval” in the context of forecasting, because a “confidence 
interval,” strictly speaking, applies to a sample (Swanson – Tayman, 2014: 204). However, underlying our approach is the concept 
of a “super population,” which describes a population as one sample from the infinity of populations (Deming – Stephan, 1941). 
Viewing a forecast as a sample leads us to choose “confidence interval” rather than forecast or prediction interval because it dis-
tinguishes the new approach from those discussed in the Introduction.
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for scientific generalizations, describes a population 
that is but one of the infinities of populations that will 
result by chance from the same underlying social and 
economic causal systems. It is a theoretical concept 
that we use to simplify the application of statistical 
uncertainty to a population forecast that is considered 
a statistical model in this context. 

ARIMA MODELS

Univariate ARIMA (Auto-Regressive Integrated Mov-
ing Average) time series models are the basis for the 
new approach for placing confidence intervals around 
CCM total population forecasts. The ARIMA model is 
described by Box and Jenkins (1976). It been used in 
the analysis and forecast of business, economic, and 
demographic variables (e.g., Box et al., 2016; Hynd-
man – Athanasopoulos, 2024: Chapter 9; Montgom-
ery – Kulahci, 2016). In recent years, ARIMA models 
have been developed using deep learning techniques 
(Gridin, 2022). Examples of its use in demographic 
forecasting include McNown et al. (1995); Pflaum-
er (1992); Swanson (2019); Tayman, Smith, and Lin 
(2007); and Zakria and Muhammad (2009). ARIMA 
models attempt to uncover the stochastic processes 
that generate a historical data series. The most gen-
eral ARIMA model is usually written as ARIMA (p, 
d, q), where p is the order of the autoregression, d 
is the degree of differencing, and q is the order of 
the moving average. The autoregressive process has 
a memory in the sense that it is based on the corre-
lation of each value of a variable with all preceding 
values. The moving average represents a “shock” to the 
system − an event with a substantial but short-lived 
impact on the time series pattern. The differencing 
process creates a stationary time series (i.e., one with 
a constant mean and variance over time). The d-value 
must be determined first because a stationary series is 
required to correctly identify the autoregressive and 
moving average processes.

We use the augmented Dickey-Fuller test (Dickey 
– Fuller, 1979) to identify the differencing required to 
achieve a stationary time series. The null hypothesis of 
this test is that a unit root is present in the time series, 
and the alternative hypothesis is that the time series is 
stationary. The patterns of the autocorrelation (ACF) 
and partial autocorrelation functions (PACF) are used 
to find the correct values for p and q (Brockwell – 
Davis, 2016: Chapter 3), and the autoregressive and 
moving average parameters have to be statistically 
significant. An adequate ARIMA model will have 
random residuals and the smallest possible values for 
p, d, or q. The Ljung-Box test (Ljung – Box, 1979) is 
used to evaluate the residuals of the estimated ARIMA 
model. The null hypothesis of this test is that the 
residuals are randomly distributed, and the alternative 
hypothesis is that the residuals are correlated with 
one another.

RESULTS

Table 1 presents selected statistics from the ARIMA 
models for each county and Washington state as 
a whole. The time series from 1960–2020 for all 39 
counties and the state as a whole required differenc-
ing to become stationary. A significant Dickey-Fuller 
statistic (p ≤ 0.10) based on first differences indicated 
a d = 1 in 29 counties and the state as a whole. The 
remaining ten counties required a second difference 
(difference of the first differences) in order  to reject 
the null hypothesis of the presence of a unit root.4) 

There is variation in the ARIMA parameters across 
counties. The most common specification was a model 
that contained only a first-order autoregressive term 
(19 counties). Nine counties contain only a first-order 
moving average term, while additional nine coun-
ties along with Washington state as a whole contain 
both first-order autoregressive and first-order mov-
ing average terms. Two counties have no autoregres-
sive or moving average terms, referred to as random 
walk models. All counties and Washington state have 

4) �With the complete time series (1960–2020), Ferry County required a second difference to make the series stationary (Dickey Fuller 
p = 0.001). An ARIMA (1,2,1) for Ferry County showed illogical interval widths as the lower limit turned and stayed negative 
from 22- to 30-year forecast horizons. A graph comparing the first and second differences suggested that the non-stationarity 
in the time series occurred between 1960 and 1969. Table 1 shows that the restricted sample required only a first difference to 
achieve stationary (Dickey Fuller p = 0.036).
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Ljung-Box p-values that exceed 0.10, indicating ran-
dom residuals in all.

We conduct three analyses. First, we investigate the 
range of uncertainty in the county forecasts by analyz-
ing county-specific half-widths (a half-width is defined 
as the width of the entire uncertainty interval divided 
by two). Second, to compare the examples discussed 
by Yu et al. (2023), Ferry, King, and Whitman coun-
ties, and Washington state as a whole, we compare 
their Bayesian-based intervals to our ARIMA-based 
intervals. We also include in the comparison the de-
terministic scenario-based intervals from the GMA 
forecasts. Finally, this analysis consists of a preliminary 
investigation of the effect of population size, growth 
rate, and horizon length on interval width.

Range of Uncertainty Across Counties
We begin by presenting the range of uncertainty in 
the county forecasts by analyzing half-widths (a half-
width is defined as the width of the entire uncertainty 
interval divided by two.  It represents the distance for 
the point estimate to either the upper or lower limit 
of the confidence interval) for 10-, 20-, and 30-year 
forecast horizons, as shown in Table 2. This Table 
also includes various summary measures of the half-
width distribution across the counties for each of the 
three forecast horizons. As expected, the confidence 
intervals get wider with an increase in the forecast 
horizon for every county, as seen in the rise in the 
half-widths going from 10-year to 30-year forecast 
horizons. The percentage increases in the half-widths 
comparing the 10-year and 30-year forecast horizons 
range from 35.4% in Island County to 303.7% in Oka-

nogan County; the average percent increase across 
counties is 111.1 (data not shown).

The summary measures of the half-widths tell 
a similar story: the average half-width increases from 
10.5% in the 10-year forecast to 24.5% in the 30-year 
forecast, an increase of 133.3%. The half-width distri-
butions are right skewed as the median half-widths 
are less than the mean half-widths in all forecast 
horizons. In the 10-year horizon, two counties have 
half-widths that exceed 20%. In the 20-year horizon, 
six counties have half-widths that exceed 35%, and 
in the 30-year horizon, six counties have half-widths 
that exceed 50%. The averages recomputed removing 
these cases are close to the median values reported 
in Table 2. Along with the average half-widths, the 
half-width variability across counties also increases 
with longer forecast horizons, with the coefficient 
of variation (abbreviated as “CV” in Table 2) rising 
from 48.3% in the 10-year forecast horizon to 75.5% 
in the 30-year forecast horizon. The direct relation-
ship between the degree of forecast uncertainty and 
the length of the forecast horizon is well known. To 
our knowledge, this is the first study to empirically 
show that the variability of uncertainty also increases 
with the length of the forecast horizon.

A higher value of the d parameter causes wider 
ARIMA intervals and intervals that increase more rap-
idly with lengthening forecast horizons. For example, 
forecasts from an ARIMA model with first differences 
follow a linear trend, while forecasts from an ARIMA 
model with second differences will follow a quadratic 
trend (Hyndman – Athanasopoulos, 2024: Chapter 9; 
Tayman – Smith – Lin, 2007). 
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Table 1  ARIMA Equations, Washington State and Counties

    Coefficients  Dickey Fuller Test
p-Value

County ARIMA 
Specification

Auto 
Regressive p-Value Moving 

Average p-Value First 
Difference

Second 
Difference

Ljung-Box
p-Value

Adams (1,1,1) –0.430 0.001 –0.961 0.000 0.008   0.173

Asotin (1,1,0) 0.338 0.004     0.009   0.159

Benton (1,1,0) 0.814 0.000     0.005   0.546

Chelan (0,2,1)     0.628 0.000 0.135 0.000 0.485

Clallam (1,1,0) 0.560 0.000     0.055   0.857

Clark (0,2,1)     0.277 0.031 0.202 0.001 0.857

Columbia (1,1,0) –0.209 0.100     0.006   0.890

Cowlitz (1,1,0) 0.580 0.000     0.014   0.124

Douglas (1,1,0) 0.347 0.004     0.002   0.285

Ferrya (1,1,1) 0.857 0.000 0.558 0.004 0.036   0.120

Franklin (1,2,0) –0.350 0.004     0.424 0.001 0.841

Garfield (0,1,1)     –0.441 0.000 0.003   0.168

Grant (0,2,1)     0.776 0.000 0.171 0.000 0.211

Grays Harbor (0,1,1)     –0.700 0.000 0.004   0.358

Island (1,1,0) 0.224 0.077     0.024   0.766

Jefferson (0,2,1)     0.550 0.000 0.143 0.001 0.112

King (1,1,1) 0.558 0.000 –0.355 0.031 0.023   0.629

Kitsap (1,1,0) 0.459 0.000     0.065   0.387

Kittitas (1,2,1) 0.494 0.003 0.887 0.000 0.531 0.000 0.827

Klickitat (0,2,1)     0.540 0.000 0.141 0.002 0.231

Lewis (1,1,0) 0.436 0.000     0.006   0.739

Lincoln (0,2,1)     0.584 0.000 0.120 0.000 0.111

Mason (1,1,0) 0.733 0.000     0.087   0.365

Okanogan (0,2,1)     0.487 0.000 0.132 0.001 0.897

Pacific (1,1,0) 0.244 0.051     0.019   0.838

Pend Oreille (1,1,1) 0.924 0.000 0.331 0.020 0.047   0.132

Pierce (1,1,0) 0.341 0.005     0.002   0.492

San Juan (1,1,0) 0.638 0.000     0.012   0.500

Skagit (1,1,1) 0.902 0.000 0.390 0.010 0.105   0.608

Skamania (0,1,0)         0.002   0.256

Snohomish (1,1,0) 0.705 0.000     0.016   0.106

Spokane (1,1,0) 704 0.000     0.097   0.925

Stevens (1,1,0) 0.823 0.000     0.077   0.150

Thurston (1,1,0) 0.584 0.000     0.004   0.219

Wahkiakum (0,1,0)         0.004   0.113

Walla Walla (1,1,1) 0.820 0.000 0.622 0.013 0.034   0.265

Whatcom (1,1,0) 0.719 0.000     0.056   0.955

Whitman (1,2,1) –0.343 0.024 0.664 0.000 0.176 0.000 0.941

Yakima (1,1,1) 0.932 0.000 0.450 0.001 0.099   0.722

Washington (1,1,1) 0.687 0.000 –0.340 0.022 0.014   0.396

Note: a) The ARIMA model for Ferry County used an annual time series from 1970 to 2020, ten years shorter used for the other counties (see Footnote 4).
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Table 2  95% Half-Widths, ARIMA Alternative by Horizon Length Washington State and Counties, 2030–2050a)

Notes: �a) Calculated from Appendix Table B3 – Half Width = (High – Low) / 2 / Point Forecast × 100. 
b) Std. Dev. / Mean × 100.

  Horizon Length

County 10-Year 20-year 30-year

Adams 6.0% 8.0% 9.3%

Asotin 6.9% 9.0% 10.3%

Benton 13.0% 19.6% 23.3%

Chelan 11.5% 28.0% 43.9%

Clallam 7.8% 10.4% 11.8%

Clark 12.2% 24.3% 38.9%

Columbia 7.8% 12.5% 15.1%

Cowlitz 5.9% 8.2% 9.5%

Douglas 6.4% 8.2% 9.2%

Ferry 20.6% 29.7% 35.0%

Franklin 17.6% 37.7% 57.8%

Garfield 28.3% 41.4% 53.7%

Grant 12.6% 24.4% 36.7%

Grays Harbor 6.4% 8.6% 10.1%

Island 7.7% 9.5% 10.5%

Jefferson 16.0% 35.3% 56.1%

King 6.9% 9.3% 10.7%

Kitsap 8.6% 11.0% 12.2%

Kittitas 10.8% 19.1% 27.1%

Klickitat 17.4% 37.3% 58.2%

Lewis 5.4% 7.1% 8.1%

Lincoln 16.3% 38.2% 64.4%

Mason 8.7% 12.0% 13.7%

Okanogan 16.5% 39.2% 66.5%

Pacific 6.6% 8.7% 10.0%

Pend Oreille 17.0% 31.1% 40.9%

Pierce 5.2% 6.6% 7.4%

San Juan 10.7% 14.1% 15.6%

Skagit 10.2% 17.1% 21.6%

Skamania 6.5% 8.9% 9.2%

Snohomish 7.4% 10.1% 11.5%

Spokane 7.2% 10.3% 12.1%

Stevens 13.8% 21.4% 25.4%

Thurston 5.5% 7.2% 8.0%

Wahkiakum 11.0% 15.3% 17.9%

Walla Walla 6.6% 9.7% 11.7%

Whatcom 6.9% 9.7% 11.1%

Whitman 11.9% 25.7% 41.0%

Yakima 7.4% 13.7% 18.4%

Washington 5.5% 7.8% 8.9%

 

  Summary Statistics, Counties

Mean 10.5% 17.9% 24.5%

Median 8.6% 12.5% 15.1%

Std. Dev. 5.1% 11.1% 18.5%

CVb) 48.3% 61.8% 75.5%
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Turning to a verbal description of Figure 2, we first 
note that the average half-width for ARIMA models 
with first differences (the darker columns) is smaller 
than ARIMA models with second differences (the 
lighter columns) in all forecast years. Moreover, the 
gap between them increases with the lengthening of 
the forecast horizon. In 2030, the average half-widths 
are relatively similar (9.3% for d = 1 vs 10.9% for d = 
2). By 2050, the gap has widened considerably (16.0 vs 

23.2%). Put another way, the average of the half-width 
for ARIMA models with first differences increased by 
173% compared to an increase of 214% for ARIMA 
models with second differences. In addition, the in-
crease in the variability of the average half-width was 
much more significant for the ARIMA models with 
second differences. The percentage increase in the 
coefficients of variation from 2030 to 2050 is 122% 
(ARIMA with d = 1) and 211% (ARIMA with d = 2).

Comparison to Other Uncertainty Intervals for 
Selected Areas
As a means of evaluating the performance of our pro-
posed method, we compare our forecast results to: (1) 
those that correspond with the results discussed by Yu 
et al. (2023), which are for Ferry, King and Whitman 
counties and the state of Washington as a whole; and 
(2) the judgmental intervals (the “low” and “high” val-

ues) that were placed by the OFM forecasters around 
their “middle” range projections (which were selected 
as the GMA forecasts) for all of the counties and the 
state as a whole. The comparisons are based on the 
“half-widths” of confidence intervals in Table 3. We 
focus on the “narrowness” of the half-widths because 
95% confidence intervals may produce widths so wide 
as to be useless (Swanson – Tayman, 2014). 

Figure 2  Average Half-Width by Difference Parameter
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Regarding Ferry County, Table 3 shows that the con-
fidence intervals (half-widths) are widest for our ap-
proach (labeled as “ARIMA Based”) for all horizon 
lengths, and those for the Bayes CCM approach (la-
beled as “Bayes CCM”) are the narrowest for all three 
horizon lengths. The GMA judgmental half-width 
(labeled “GMA Forecast”) falls between the other 
two approaches but tends to be closer to the Bayes 
CCM than ours. For all three approaches, the widths 
increase over time, per the expectation that forecast 
uncertainty increases as the horizon lengthens.
For King County at the 10-year horizon, the confi-
dence intervals produced by our method are slightly 
narrower than the intervals reported both for the 
Bayesian method and those reported by OFM for the 
GMA forecast and substantially narrower at 20 and 30 
years. The GMA intervals are somewhat narrower than 
the Bayes intervals at the 30-year horizon lengths but 
are not as narrow as our approach at any of the three 
horizon lengths. As was the case for Ferry County, 
the widths increase over time for all three approaches.

For Whitman County, the Bayes CCM approach 
produces the narrowest widths for all three horizon 
lengths. The GMA intervals are narrower than the in-
tervals for our approach at all three horizon lengths, 
and those differences increase with the horizon length 
(2.6 percentage points for a 10-year horizon and 26.7 
percentage points for a 30-year horizon).5) It should 
be noted, however, that Yu et al. (2023) held the age 
groups associated with college attendance constant in 
counties such as Whitman, where these populations 
significantly impact the county’s overall age struc-
ture. Once again, the widths increase over time for 
all three approaches.
Considering Washington state as a whole, the intervals 
for the Bayes CCM approach are the narrowest for the 
10- and 20-year horizon lengths, while our approach 
produces the narrowest interval for the 30-year hori-
zon length. The GMA boundaries produce the widest 
intervals across all three horizon lengths by a sizable 
margin. Once again, the widths increase over time for 
all three approaches.

Table 3  95% Half Width by Method and Horizon Length, Selected Counties and Washington Statea)

Ferry County King County

Horizon 
Length

GMAb)

Forecast
Bayesc) 

CCM
ARIMAd) 

Based
Horizon 
Length

GMA
Forecast

Bayes
CCM

ARIMA
Based

10 years 11.8% 9.7% 20.6% 10 years 10.6% 7.0% 6.9%

20 Years 21.6% 19.1% 29.7% 20 Years 15.2% 14.2% 9.3%

30 Years 32.0% 28.2% 35.0% 30 Years 19.3% 21.0% 10.7%

 

Whitman County Washington State

Horizon 
Length

GMA
Forecast 

Bayes
CCM

ARIMA
Based

Horizon 
Length

GMA
Forecast 

Bayes
CCM

ARIMA
Base

10 years 9.3% 4.9% 11.9% 10 years 9.6% 3.0% 5.5%

20 Years 11.8% 8.8% 25.7% 20 Years 13.4% 6.3% 7.8%

30 Years 14.3% 12.6% 41.0% 30 Years 16.6% 9.7% 8.9%

Note: a) Half Width = (High – Low) / 2 / Point Forecast × 100.
Sources: �b) Washington (2022). 

c) Yu, et, al. (2023). 
d) Computed from Appendix Table B3.

5) �Whitman county’s ARIMA model required second differences; and as expected, its interval width increased much faster than the 
other areas whose ARIMA models required first differences. From the 10-year to 30-year horizons, Whitman’s half-width inc-
reased by 240% compared to 60% or 70% for the other two counties and Washington state.
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These comparisons suggest that our approach pro-
duces uncertainty measures for county population 
forecasts similar to those generated by the Bayes CCM 
approach. Moreover, we find that all three approaches 
produce uncertainty intervals that are not so wide as 
to be useless, which is a point brought up by Swan-
son and Tayman (2016) in an earlier examination of 
forecast uncertainty. 
Another example of the viability of our approach is 
Ferry County, which has the smallest population of 
the three counties. It has a 2020 population of 7,178 
and a forecasted 2050 population of 6,986 (Washing-
ton, 2022). To see a 10-year horizon length half-width 
of 20.6 % and a half-width of 35.0% for the 30-year 
horizon length per our approach is not unexpected. 
Moreover, except for the 30-year horizon for Whit-
man County, all three methods across all three hori-
zon lengths produce the widest uncertainty intervals 
in Ferry County, with the smallest population.

Impact of Population Size and Growth Rate on 
Interval Width
It has been established by ex-post evaluations that 
population size and growth rate affect forecast preci-
sion and bias (see Smith – Tayman – Swanson, 2013: 
338–341 for a review of these findings). Consistent 
with these results and adding to them, we find that: 

1. �Forecast precision improves as population size 
increases, but this relationship weakens or dis-
appears once the population reaches a certain 
size. However, population size has no predict-
able relationship with forecast bias. 

2. �Population growth rate affects both forecast 
precision and bias. Forecast precision is great-
est for areas with small population changes, and 
declines as growth rates deviate in both a posi-
tive and negative direction from these low levels. 

3. �Bias is also strongly affected by differences in 
population growth rates. Areas losing popula-
tion tend to be under-forecasted, whereas rap-
idly growing areas tend to be over-forecasted.

Now that we have shown our method produces in-
tervals that are consistent with the idea that forecast 
interval width should increase temporally in conjunc-
tion with the increase in uncertainty expected as one 
looks further into the future, we turn to an exami-
nation of the effect that population size and growth 

rate have on forecast interval width. A review of the 
literature shows that such an examination has not yet 
been conducted with any specificity. To this end, we 
use a regression framework with the half-width as the 
dependent variable and population size and growth 
rate as the dependent variables, following the approach 
used in Tayman, Smith, and Rayer (2011). Separate 
models are estimated for 10- 20- and 30-year forecast 
horizons using single-variable regressions containing 
population size and growth rate and multiple regres-
sions with both variables. Population size is measured 
at each forecast horizon, and growth rate is the percent 
change from 2020 to each forecast horizon.
We analyzed the functional form of the two inde-
pendent variables at each forecast horizon length 
using graphs and the adjusted multiple coefficient of 
determination (adjR2). The adjustment to the multi-
ple coefficient of determination takes into account the 
complexity of a given regression model relative to the 
complexity of its input data (Poston – Conde – Field, 
2024: 137–138). We determined the same functional 
form was appropriate for each horizon length. We il-
lustrate this process using the 10-year forecast horizon, 
but the information for the 20- and 30-year horizons 
is available from us. Figure 3 shows the relationship 
between the natural log of population size (x axis) and 
half-width (y axis) for counties in Washington state 
at the 10-year forecast horizon. We use the natural 
log of the population to accommodate the skewed 
distribution of population size, which in 2030 ranges 
from 2,247 in Garfield County to 2,487,380 in King 
County. Also, the natural log of the population is more 
closely associated with the half-width than the un-
logged population. In a single variable regression, the 
logged population has an adjR2 of 0.272 compared to 
0.067 for the unlogged value. As can be seen in Figure 
3, the relationship tends to weaken around a popu-
lation size of 36,000 (exp (ln (10.5)), suggesting the 
need for a squared term. However, adding a squared 
term slightly increases the adjR2 from 0.213 to 0.231, 
which is not statistically significant.
Figure 4 shows the relationship between the decen-
nial growth rate (x axis) and half-width (y axis) for 
counties in Washington state at the 10-year forecast 
horizon. The natural log of growth rate specifica-
tion did not add to the explained variation of the 
half-width beyond the unlogged growth rate; both 
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specifications had an adjR2 of 0.056. Growth rate and 
half-width rate have a u-shaped relationship with 
the half-width. Adding the squared term raises the 
adjR2 substantially compared to an equation without it  
(0.006 vs 0.119).

The regression statistics are shown in Table 4, with 
the top two sections showing the adjR2. The explana-
tory power of the models declines as the horizon 
length increases, similar to the results of Tayman, 
Smith, and Rayer (2011). However, contrary to the 

Figure 3  Relationship Between Ln(Population Size) and Half-Width, 2030

Figure 4  Relationship Between Population Growth Rate and Half-Width, 2030
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  Adjusted R2

Model 10-Year 20-Year 30-Year

Ln (Size) 0.213 0.122 0.076

Growth Rate, Growth Rate2 0.119 0.064 0.036

Ln (Size), Growth Rate, Growth Rate2 0.267 0.166 0.104

 

  Reduction in R2 From Size and Growth Rate Model

Model 10-Year 20-Year 30-Year

Ln (Size) –20.2% –26.5% –26.9%

Growth Rate, Growth Rate2 –55.4% –61.4% –65.4%

 

  Unstandardized Regression Coefficients

Variables 10-Year 20-Year 30-Year

Constant 0.291** 0.514** –0.719**

Ln (Size) –0.016** –0.031** –0.045*

Growth Rate –0.539 –0.365 –0.255

Growth Rate2 4.548* 2.051 1.254

Table 4  Regression Models Predicting Half-With By Horizon Length Adjusted R2  
and Unstandarized Regression Coefficients

literature on population forecast error, population 
size has greater explanatory power than popula-
tion growth rate in explaining the width of fore-
cast intervals. The adjR2 declines between –20% and  
–27% when the model includes only population size 

compared to the model that consists of both size and 
growth rate. The decline in adjR2 is substantially great-
er when the model contains only growth rate, ranging 
from –65% in the 30-year forecast horizon to –55% 
in the 10-year forecast  horizon.

The last panel in Table 4 shows the regression coeffi-
cients for the model, containing both size and growth 
rate. The results for population size and growth rate 
are consistent across horizon lengths. The coefficients 
have the same signs, but their magnitudes vary less 
for population size than for population growth rate. 
The signs of the size coefficients are consistent with 
changes both in half-width and population size. They 
are also consistent with the parabolic relationship 
between growth rate and half-width. Half-width de-
creases as population losses moderate and increases 
as growth rates accelerate. Most coefficients are not 

statistically significant, partly due to the small sample 
size (39) and the number of variables in the regression 
equation. Four of the nine size and growth rate coef-
ficients across all horizon years on the independent 
variables are significant at the 0.10 level. Three of the 
four significant coefficients are found in the popula-
tion size variable.

DISCUSSION

The approach we propose can be linked directly not 
only to the CCM method but also to its algebraic 

Note: * P < 0.10, ** P < 0.05.
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equivalent, the CCR method. Unlike the approach 
found in Swanson and Beck (1994), neither the CCM 
nor the CCR approach is inherently conjoined with 
a method for generating statistical uncertainty. Thus, 
we believe this linkage represents a step forward on 
the path to generating probabilistic forecasts based on 
the fundamental population equation. In addition, this 
new approach is simpler than the methods described 
by Cameron and Poot (2011) and Wilson (2012) and 
far simpler than the Bayes CCM approach described 
by Yu et al. (2023). Moreover, it is neither opaque nor 
counter-intuitive, criticisms directed at Bayesian meth-
ods by Goodwin (2015). Notably, the ARIMA method 
is widely available in software packages used by state 
and local demographers and is more in line with their 
existing programming and other skills. They also have 
historical data that will support the construction of 
county ARIMA forecasts.
Analysis of the interval widths (as measured by the 
half-widths) is consistent with the expectation that 
probabilistic forecast intervals widen with increases 
in the forecast horizon. We found that the variability 
of the uncertainty across counties also increases as 
the forecast horizon increases. This represents a novel 
finding in that it does not appear in the literature. We 
examined the well-known non-linear relationships 
between population size and growth rate and forecast 
accuracy and bias using regression techniques with 
half-width as the dependent variable. Population size 
had a logarithmic relationship with half-width, and 
growth rate had a parabolic relationship (linear and 
squared terms). Interval width declined with increases 
in population size, but the interval width plateaued 
when counties reached a population of 36,000 or so. 
Interval widths were narrowest for slow-changing 
counties and increased as counties increased their rate 
of population decline or population increase. These 
findings are consistent with the relationships between 
population size and growth rate with forecast accuracy. 
What differs is that population size has a more sub-
stantial effect than population growth rate on interval 
width. The opposite occurs in the relationships with 
forecast accuracy. Keep in mind, however, these find-
ings are based on a sample made up of the 39 counties 
in Washington state. They should be investigated in 
a larger sample of U.S. counties.

The strength of relationships between, on the one 
hand, population size and growth rate with, on the 
other, interval width was relatively weak and became 
weaker as the forecast horizon lengthened. Although 
not shown, the addition of a  dummy variable 
representing counties with first and second-difference 
ARIMA models into the regression equations 
markedly raised the explained variance. Unlike the 
equations without the dummy variable, the explained 
variance increased as the forecast horizon lengthened. 
These results suggest that ARIMA model specification 
may be a more critical factor in explaining interval 
width than population size and growth rate. Future 
research should investigate and quantify the impact 
of these and other factors on interval widths from 
ARIMA models.
The approach we propose does not produce uncer-
tainty intervals by age and gender, births, death, and 
migration, which are produced by the Bayes CCM 
approach described by Yu et al. (2023) and the CCR 
approach discussed by Swanson and Tayman (2014). 
Neither the Bayes CCM nor our approach, however, 
considers uncertainty in the input data themselves, 
a similarity also shared with the work by Cameron 
and Poot (2011), Swanson and Tayman (2014), and 
Wilson (2012). However, as Yu et al. (2023) implied, 
these are not likely to be among the most important 
sources of uncertainty for data in the United States 
and other countries where subnational population 
forecasts are routinely produced.
Regarding our approach not providing uncertainty 
intervals by age and gender, Deming’s (1950: 127–134) 
“error propagation” was used to translate uncertainty 
in age group intervals found in the regression-based 
CCR forecasts reported by Swanson and Tayman 
(2014) to the total populations in question. In different 
forms, “error propagation” has been used by Alho 
and Spencer (2005), Espenshade and Tayman (1982), 
and Hansen, Hurwitz, and Madow (1953), among 
others. It may be possible to reverse-engineer error 
propagation and develop uncertainty measures by age 
and gender using our approach. It may be worthwhile 
to explore this possibility As an approximation, 
one could generate age uncertainty intervals by 
controlling the county “low” and “high” numbers 
in the 2017 GMA series to their corresponding 95% 
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lower and upper limits, respectively, of our proposed  
approach. 

CONCLUSION

Smith, Tayman, and Swanson (2002: 373) opined that 
future research should focus increasingly on measuring 
uncertainty in population forecasts. Machine learning 
and AI may be significant in these endeavors (Baker – 
Swanson – Tayman, 2023). They noted that while such 
research may not directly improve forecast accuracy, 
it will enhance our understanding of the uncertainty 
inherent in population forecasts. They stated that this 
change would imply a shift from “population projec-
tions” to “population forecasts,” a guideline we have 
followed in this paper.
In closing, we argue that the approach we propose 
and have described in this paper is well-suited for 
generating probabilistic subnational population fore-
casts in the United States and elsewhere where these 
forecasts are routinely produced. Because it can be 
applied to both the CCM and the CCR approach-

es, our method for producing forecast uncertainty 
information provides a path to a reasonable level 
of forecast accuracy as identified by Swanson et al. 
(2023). It also has the potential to optimize forecast 
utility, which as described in the Introduction is in 
accordance with the “triple constraint perspective” 
that underlies our approach. None of this is meant 
to imply that forecast uncertainty measures derived 
from ARIMA models using the Espenshade-Tayman 
method are more accurate than those generated from 
a Bayesian method. Rather, the findings herein sug-
gest that our approach has a higher level of utility 
than a Bayesian approach while providing forecast 
intervals that are similar in width relative to both 
population size and forecast horizon length. As such, 
it offers a viable alternative to the Bayesian approach 
in that our results indicate that it produces similar 
measures of uncertainty, is simpler to implement, and, 
at this point in time, is likely to be more accessible 
to many of those who have been tasked to produce 
formal measures of uncertainty for their population  
forecasts.
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APPENDIX

Appendix A: The Cohort Component 
Method of Population Projection
As its name suggests, the Cohort Component Method 
(CCM) requires the application of the components of 
population change – fertility, mortality, and migration 
to the age-gender structure at the projection’s launch 
year (George et al., 2004; Smith – Tayman, – Swanson, 
2013: 155–182; Yusuf – Martins – Swanson, 2014: 
231–253). There are three components of change in 
a population: mortality, fertility, and migration. The 
overall growth or decline of a population is determined 
by the interplay among these three components. The 
exact nature of this interplay can be formalized in the 
basic demographic equation:

	 Pl – Pb = B – D + IM – OM	 [1]

Where Pl is the population at the end of the time 
period; Pb is the population at the beginning of the 
time period; and B, D, IM, and OM are the number of 
births, deaths, in-migrants, and out-migrants during 
the time period, respectively. The difference between 
the number of births and the number of deaths is 
called natural change (B – D); it represents popula-
tion growth coming from within the population itself. 
It may be either positive or negative, depending on 
whether births exceed deaths or deaths exceed births. 
The difference between the number of in-migrants 
and the number of out-migrants is called net migra-
tion (IM – OM); it represents population growth com-
ing from the movement of people into and out of the 
area. It may be either positive or negative, depending 
on whether in-migrants exceed out-migrants or out-
migrants exceed in-migrants. 
The basic demographic equation can also be extended 
to apply to age groups, age-sex groups, and age-sex-
race groups, as well as age-sex-ethnicity groups. This 
type of extension forms the logical basis of the and can 
be used to project a population into the future by age, 
age and sex, or by age, sex, and race. Once launched, 
these components (which are frequently modified as 
the projection moves into the future based on assump-
tions about their direction) are applied to the resulting 
age-gender structure at each cycle of the projection. 

The Cohort Change Ratio Method of 
Population Projection 
Unlike the CCM approach, its algebraic equivalent 
(Baker et al., 2017: 251–252).  The Cohort Change 
Ratio (CCR) method does not apply the separate com-
ponents of population change to the age-sex structure 
at the launch year. Instead, it computes cohort change 
ratios (CCRs) using two counts of the age-structure 
in question, typically five or ten years apart, which 
directly capture mortality and migration. The fertility 
component uses a “child-adult ratio” from the most 
recent age structure data or a “child-woman ratio” for 
a projection by gender. It is well- suited for generat-
ing a projection of the population of the world, per 
the framework found in Swanson et al. (2023): (1) 
It corresponds to the dynamics by which a popula-
tion moves forward in time; (2) there is information 
available relevant to these dynamics; (3) the time and 
resources needed to assemble relevant information 
and generate a projection is minimal; and (4) the in-
formation needed from the projection is generated 
by the CCR method.

The CCR method moves a population by age (and 
sex) from time t to time t+k using cohort-change ratios 
(CCRs) computed from data in the two most recent 
data points (e.g., censuses or estimates). It consists 
of two steps. The first uses existing data to develop 
CCRs, and the second applies the CCRs to the cohorts 
of the launch year population to move them into the 
future. The formula for the first step, the development 
of a CCR, is:

	 nCCRx,i = nPx,i,t / nPx–k,i,t–k,	 [2]

where 
nPx,i,t is the population aged x to x+n in area i at the 

most recent census/estimate (t), 
nPx–k,i,t–k is the population aged x–k to x–k+n in area 

i at the 2nd most recent 
census/estimate (t–k), 
k is the number of years between the most recent 

census/estimate at time t 
   for area i and the census/estimate preceding it for 
area i at time t–k.
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The basic formula for the second step, moving the 
cohorts of a population into the future, is:

	 nPx+k,i,t+k = (nCCRx,i ) × (nPx,i,t),	 [3]

where 
nPx+k,i,t+k is the population aged x+k to x+k+n in 

area i at time t+k
Given the nature of the CCRs, they cannot be cal-

culated for the youngest age group (e.g., ages 0–4 if 
it is a five-year projection cycle; 0–9 if it is a ten-year 
projection cycle), because this cohort came into exist-
ence after the census/estimate data collected at time 
t–k. To project the youngest age group, we use the 
“Child-Adult Ratio” (CAR), where the number in the 
youngest age group at time t is divided by the number 
of adults at time t who are of childbearing age (e.g., 
15–44). It does not require any data beyond what is 
available in the census/estimate sets of successive data.

The CAR equation for projecting the population 
aged 0–4 is:

Population 0–4: 5P 0,t+k = (5P0,t / 30P 15,t) × (30P15,t+k),	 [4]

where 
P is the population, 
t is the year of the most recent census, and
t+k is the estimation year.

Projections of the oldest open-ended age group 
differ slightly from the CCR projections for the age 
groups beyond age 10 up to the oldest open-ended 
age group. If, for example, the final closed age group 
is 80–84, with 85+ as the terminal open-ended age 
group, then calculations for the CCRi,x+ require the 
summation of the three oldest age groups to get the 
population age 75+ at time t–k:

	 ∞CCR75,i,t  = ∞P85,i,t / ∞P75,i,t–k 	 [5]
 

The formula for estimating the population of 85+ of 
area i for the year t+k is:

	 ∞P85,i,t+k = (∞CCR75,i,t) × (∞P75,i,t).	 [6]

Appendix B: Forecasts Used in the 
ARIMA Approach to Measuring 
Uncertainty 

Three different forecasts are used in the ARIMA 
approach to measure forecast uncertainty in the county 
and Washington state forecasts. Table B1 provides the 
population density forecasts for 2030, 2040, and 2050 
by county and Washington state generated by the 
ARIMA method described in the paper. This Table 
also provides the land area of each county and Wash-
ington state. Table B2 provides the medium series of 
2022 GMA (CCM) forecasts by county in 2030, 2040, 
and 2050, as well as for Washington state. These are 
the point forecasts used in translating the density 
confidence intervals to population confidence inter-
vals. Finally, Table B3 shows the translation result. It 
provides the medium series GMA (CCM) forecasts by 
county for 2030, 2040, and 2050, as well as for Wash-
ington state, along with their 95% confidence intervals. 

Forecast intervals for the 2030 Adams County 
population illustrate the ARIMA-based approach to 
measuring uncertainty. The lower limit, point fore-
cast, and upper limit for the population density from 
Table B1 are 10.9, 11.6, and 12.3. respectively. Based 
on these densities, the relative distance between the 
limits and point forecast is derived by:

Lower Limit Distance (10.9 – 11.6) / 11.6 = 
–0.060345 and

Upper Limit Distance (12.3 – 11. 6) / 11.6 = 
0.060345.

The Adams County 2030 Growth Management 
population “point” forecast is 22,565, as shown 
in Table B2. The confidence intervals around 
the 2030 population point forecast shown in 
Table B3 are derived by:

Lower Limit Population 22,565 + (–0.060345 × 
22,565) = 21,203 and

Lower Limit Population 22,565 + (0.060345 × 
22,565) = 23,927.
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    2030 2040 2050

County Land Areab) LL95% Point UL95% LL95% Point UL95% LL95% Point UL95%

Adams 1,924 10.9 11.6 12.3 11.5 12.5 13.5 12.1 13.4 14.6

Asotin 636 35.2 37.8 40.4 37.0 40.6 44.3 39.0 43.5 48.0

Benton 1,703 121.6 139.7 157.8 124.5 154.9 185.3 130.2 169.7 209.2

Chelan 2,921 26.2 30.1 33.1 23.9 33.2 42.5 20.3 36.2 52.1

Clallam 1,745 45.1 48.9 52.7 48.1 53.7 59.3 51.6 58.5 65.4

Clark 628 868.3 988.9 1,109.4 876.3 1,157.4 1,438.5 833.0 1,363.4 1,893.8

Columbia 869 4.1 4.5 4.8 3.8 4.4 4.9 3.6 4.3 4.9

Cowlitz 1,139 99.1 105.3 111.6 103.6 112.8 122.0 108.8 120.2 131.6

Douglas 1,820 24.7 26.4 28.1 26.8 29.2 31.6 29.0 32.0 34.9

Ferry 2,210 2.7 3.4 4.1 2.6 3.7 4.8 2.6 4.0 5.4

Franklin 1,242 77.7 94.3 110.9 69.0 110.7 152.4 53.6 127.1 200.6

Garfield 710 2.2 3.0 3.9 1.7 2.9 4.1 1.2 2.7 4.1

Grant 2,676 36.5 41.8 47.0 35.1 46.5 57.8 32.4 51.2 70.0

Grays Harbor 1,917 38.5 41.2 43.8 39.2 42.9 46.6 40.1 44.6 49.1

Island 209 439.3 475.8 512.8 484.6 535.6 586.7 533.2 595.4 657.7

Jefferson 1,808 16.8 20.0 23.2 14.1 21.8 29.5 10.3 23.6 36.8

King 2,126 1,101.4 1,182.8 1,264.1 1,163.0 1,282.5 1,402.0 1,234.0 1,382.2 1,530.4

Kitsap 396 718.9 786.2 853.5 780.8 877.1 973.3 849.6 968.0 1,086.3

Kittitas 2,297 21.1 23.7 26.2 21.7 26.9 32.0 21.9 30.1 38.2

Klickitat 1,871 11.4 13.8 16.2 9.6 15.4 21.1 7.1 17.0 26.9

Lewis 2,408 35.2 37.2 39.2 37.3 40.1 43.0 39.6 43.1 46.6

Lincoln 2,313 4.1 4.9 5.7 3.2 5.1 7.1 2.0 5.2 8.7

Mason 961 70.5 77.2 83.9 76.4 86.8 97.2 83.2 96.4 109.6

Okanogan 5,273 6.8 8.2 9.5 5.1 8.3 11.6 2.9 8.5 14.2

Pacific 974 23.9 25.6 27.3 24.8 27.1 29.5 25.8 28.6 31.5

Pend Oreille 1,400 8.5 10.3 12.0 7.7 11.1 14.6 7.1 12.1 17.0

Pierce 1,675 579.3 610.9 642.4 626.5 671.0 715.5 676.7 731.2 785.6

San Juan 175 105.3 117.9 130.6 115.1 133.9 152.8 126.5 150.0 173.4

Skagit 1,735 75.4 83.9 92.5 77.0 92.9 108.8 79.8 101.7 123.7

Skamania 1,658 7.2 7.7 8.2 7.7 8.4 9.2 8.3 9.2 10.0

Snohomish 2,090 419.6 453.2 486.7 456.5 508.0 559.5 498.1 562.8 627.5

Spokane 1,764 311.5 335.6 359.8 323.7 360.8 397.9 339.1 385.7 432.7

Stevens 2,477 17.8 20.7 23.5 18.0 22.9 27.8 18.8 25.2 31.6

Thurston 727 439.8 465.4 490.9 485.9 523.4 560.9 535.0 581.4 627.9

Wahkiakum 264 15.3 17.2 19.1 15.0 17.7 20.4 14.9 18.2 21.4

Walla Walla 1,271 48.9 52.3 55.8 50.0 55.4 60.8 51.6 58.5 65.3

Whatcom 2,120 112.0 120.4 128.7 120.7 133.6 146.5 130.6 146.9 163.2

Whitman 2,159 21.0 23.9 26.7 18.9 25.5 32.0 16.0 27.1 38.2

Yakima 4,296 59.2 63.9 68.7 59.2 68.6 78.0 60.0 73.5 87.1

Washington 66,589 122.6 129.8 137.0 131.3 142.4 153.4 141.0 154.9 168.7

Table B1  ARIMA Population Density Forecasts, Washington State and Counties, 2030–2050a)

Note: a) Population per square mile.
Source: b) Land area in square miles (Washington, 2020); Also see discussion in text.
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Table B2  2022 GMA Medium Forecasts, Washington State and Counties, 2030–2050

Source: Washington, 2022

County 2030 2040 2050

Adams 22,565 24,387 26,100

Asotin 23,214 23,815 24,111

Benton 235,177 262,587 288,887

Chelan 85,889 91,914 97,195

Clallam 81,791 85,374 87,800

Clark 583,307 660,653 735,724

Columbia 3,806 3,625 3,366

Cowlitz 118,309 125,320 130,993

Douglas 47,750 52,256 56,461

Ferry 7,239 7,169 6,986

Franklin 114,907 132,930 150,970

Garfield 2,247 2,172 2,061

Grant 111,367 123,116 134,321

Grays Harbor 77,203 77,614 76,892

Island 93,670 99,870 105,250

Jefferson 36,226 39,170 41,719

King 2,487,380 2,690,851 2,879,176

Kitsap 297,608 317,694 335,268

Kittitas 52,091 57,521 62,643

Klickitat 24,511 26,059 27,376

Lewis 87,746 92,313 95,871

Lincoln 11,270 11,459 11,496

Mason 72,981 79,792 85,947

Okanogan 43,676 44,660 45,101

Pacific 24,475 25,033 25,183

Pend Oreille 14,442 15,311 16,009

Pierce 1,015,395 1,104,062 1,186,146

San Juan 19,986 22,046 23,957

Skagit 142,805 155,142 166,281

Skamania 12,529 13,322 14,006

Snohomish 935,370 1,039,254 1,138,649

Spokane 587,377 630,994 669,671

Stevens 50,215 53,502 56,278

Thurston 333,783 371,542 407,392

Wahkiakum 4,713 4,925 5,070

Walla Walla 64,977 66,695 67,645

Whatcom 254,158 280,275 304,836

Whitman 49,489 50,698 51,459

Yakima 271,120 283,351 293,279

Washington 8,502,764 9,248,473 9,937,575
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2030 2040 2050

County LL95% Point UL95% LL95% Point UL95% LL95% Point UL95%

Adams 21,203 22,565 23,927 22,436 24,387 26,338 23,568 26,100 28,437

Asotin 21,617 23,214 24,811 21,703 23,815 25,985 21,617 24,111 26,605

Benton 204,707 235,177 265,647 211,053 262,587 314,121 221,645 288,887 356,129

Chelan 74,761 85,889 94,449 66,167 91,914 117,661 54,504 97,195 139,886

Clallam 75,435 81,791 88,147 76,471 85,374 94,277 77,444 87,800 98,156

Clark 512,171 583,307 654,384 500,199 660,653 821,107 449,507 735,724 1,021,941

Columbia 3,468 3,806 4,060 3,131 3,625 4,037 2,818 3,366 3,836

Cowlitz 111,343 118,309 125,387 115,099 125,320 135,541 118,569 130,993 143,417

Douglas 44,675 47,750 50,825 47,961 52,256 56,551 51,168 56,461 61,578

Ferry 5,749 7,239 8,729 5,038 7,169 9,300 4,541 6,986 9,431

Franklin 94,679 114,907 135,135 82,856 132,930 183,004 63,666 150,970 238,274

Garfield 1,648 2,247 2,921 1,273 2,172 3,071 916 2,061 3,130

Grant 97,246 111,367 125,221 92,933 123,116 153,035 85,000 134,321 183,642

Grays Harbor 72,144 77,203 82,075 70,920 77,614 84,308 69,134 76,892 84,650

Island 86,484 93,670 100,954 90,360 99,870 109,398 94,255 105,250 116,263

Jefferson 30,430 36,226 42,022 25,335 39,170 53,005 18,208 41,719 65,053

King 2,316,199 2,487,380 2,658,351 2,440,125 2,690,851 2,941,577 2,570,470 2,879,176 3,187,882

Kitsap 272,132 297,608 323,084 282,813 317,694 352,539 294,260 335,268 376,241

Kittitas 46,376 52,091 57,586 46,402 57,521 68,426 45,577 62,643 79,500

Klickitat 20,248 24,511 28,774 16,245 26,059 35,704 11,434 27,376 43,318

Lewis 83,028 87,746 92,464 85,867 92,313 98,989 88,086 95,871 103,656

Lincoln 9,430 11,270 13,110 7,190 11,459 15,953 4,422 11,496 19,234

Mason 66,647 72,981 79,315 70,232 79,792 89,352 74,178 85,947 97,716

Okanogan 36,219 43,676 50,600 27,442 44,660 62,416 15,387 45,101 75,345

Pacific 22,850 24,475 26,100 22,908 25,033 27,250 22,718 25,183 27,737

Pend Oreille 11,918 14,442 16,826 10,621 15,311 20,139 9,394 16,009 22,492

Pierce 962,872 1,015,395 1,067,752 1,030,842 1,104,062 1,177,282 1,097,737 1,186,146 1,274,393

San Juan 17,850 19,986 22,139 18,951 22,046 25,158 20,204 23,957 27,694

Skagit 128,337 142,805 157,443 128,589 155,142 181,695 130,474 166,281 202,251

Skamania 11,715 12,529 13,343 12,212 13,322 14,591 12,636 14,006 15,224

Snohomish 866,022 935,370 1,004,511 933,897 1,039,254 1,144,611 1,007,749 1,138,649 1,269,549

Spokane 545,196 587,377 629,733 566,111 630,994 695,877 588,762 669,671 751,275

Stevens 43,180 50,215 57,007 42,054 53,502 64,950 41,985 56,278 70,571

Thurston 315,423 333,783 352,071 344,922 371,542 398,162 374,879 407,392 439,975

Wahkiakum 4,192 4,713 5,234 4,174 4,925 5,676 4,151 5,070 5,961

Walla Walla 60,753 64,977 69,325 60,194 66,695 73,196 59,666 67,645 75,508

Whatcom 236,426 254,158 271,679 253,213 280,275 307,337 271,011 304,836 338,661

Whitman 43,484 49,489 55,287 37,576 50,698 63,621 30,382 51,459 72,536

Yakima 251,178 271,120 291,486 244,524 283,351 322,178 239,411 293,279 347,546

Washington 8,031,116 8,502,764 8,974,412 8,527,560 9,248,473 9,962,892 9,045,824 9,937,575 10,822,911

Table B3  ARIMA 95% Intervals Applied to the GMA Medium Forecasts, Washington State and Counties, 
2030–2050

Sources: Data from Tables B1 and B2, calculations of intervals by authors.


