



# Survey Methods II: Statistical Analysis of Surveys in R

## CSDE Workshop

Jessica Godwin

January 27, 2026

Resources and Materials  
oooo

Why survey statistics?  
oooo

Survey Designs  
oooooooooooooooooooo

Estimation with Survey Data  
oooooooooooooooooooo

Data Visualization  
oooooooo

Etc.  
oooo

## Resources and Materials

## Why survey statistics?

## Survey Designs

## Estimation with Survey Data

## Data Visualization

## Etc.

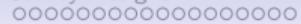
## Resources and Materials



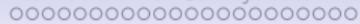
### Why survey statistics?



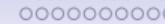
### Survey Designs



### Estimation with Survey Data



### Data Visualization



### Etc.



# Resources and Materials

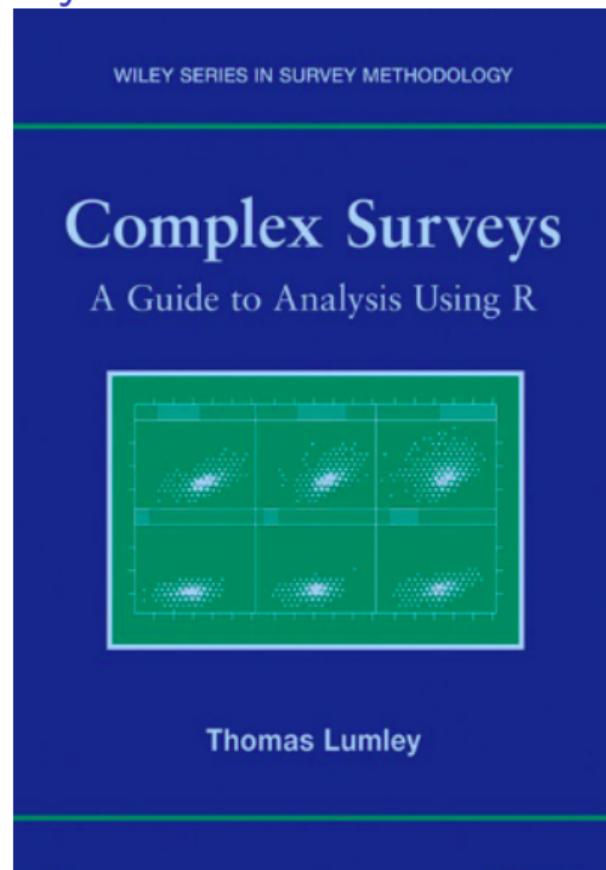
## Install survey

- Survey Package Documentation

```
install.packages("survey", dependencies = TRUE)
```

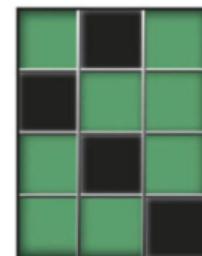
## Complex Surveys in R

- Lumley, Thomas (2004). Analysis of Complex Survey Samples. *Journal of Statistical Software*, 9(8), 1–19.  
<https://doi.org/10.18637/jss.v009.i08>
- Lumley, Thomas (2011). Complex surveys: a guide to analysis using R (Vol. 565). John Wiley & Sons.



## Survey Statistics

- Lohr, Sharon L (1999). Sampling: Design and analysis. Pacific Grove, CA: Duxbury Press. <https://doi.org/10.1201/9780429298899>
- Särndal, C. E., Swensson, B., & Wretman, J. (2003). Model assisted survey sampling. Springer Science & Business Media. <https://link.springer.com/book/9780387406206>
- CSSS/STAT 529 (Spring, taught by Elena Erosheva or Jon Wakefield)



# Sampling: Design and Analysis

SECOND EDITION

Sharon L. Lohr

Resources and Materials  
oooo

Why survey statistics?  
●ooo

Survey Designs  
oooooooooooooooooooo

Estimation with Survey Data  
oooooooooooooooooooo

Data Visualization  
ooooooo

Etc.  
oooo

# Why survey statistics?

# Why survey statistics?

- If our outcome is binary:

# Why survey statistics?

- If our outcome is binary:
  - Did our data arise from flipping a coin? or
  - Did our data arise from drawing from an urn?

# Why survey statistics?

- If our outcome is binary:
  - Did our data arise from flipping a coin? or
  - Did our data arise from drawing from an urn?
- What does flipping a coin or drawing from an urn have to do with surveys with human respondents?

## Finite vs. superpopulations

For observations  $i = 1, \dots, n$ , let

$$y_i = \begin{cases} 1, & \text{success,} \\ 0, & \text{failure.} \end{cases}$$

- Superpopulation: If  $y \sim \text{Bernoulli}(p)$ ,
  - $E[y] = p$   $\text{Var}(y) = p(1 - p)$ .
- Finite population: If  $y \sim \text{Hypergeometric}(N, K, n)$ ,
  - $E[y] = \frac{K}{N}$   $\text{Var}(y) = \frac{K}{N} \left(1 - \frac{K}{N}\right) \left(1 - \frac{n}{N}\right)$ . How do we say what  $\hat{p}$  means in either case? Is it the same?

## Finite vs. superpopulations, cont'd

If  $y_i \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$ ,

$$\hat{p} = \frac{\sum_{i=1}^n y_i}{n},$$

$$\widehat{Var}(\hat{p}) = \frac{\hat{p}(1 - \hat{p})}{n}.$$

If  $y_i \stackrel{\text{iid}}{\sim} \text{Hypergeometric}(N, K, n)$ ,

$$\hat{p} = \frac{\sum_{i=1}^n y_i}{n} = \frac{k}{n}$$

$$\widehat{Var}(\hat{p}) = \frac{\hat{p}(1 - \hat{p})}{n} \times \left(1 - \frac{n}{N}\right).$$

How do we say what  $\hat{p}$  means in either case? Is it the same?

Resources and Materials  
oooo

Why survey statistics?  
oooo

**Survey Designs**  
●oooooooooooooooooooo

Estimation with Survey Data  
oooooooooooooooooooo

Data Visualization  
oooooooo

Etc.  
oooo

# Survey Designs

## Simple random sampling(SRS)

- Under an **SRS** of  $n$  observations
- Under an **SRSWOR** of  $n$  observation

$$\Pr(\text{subject } k \in \text{sample}, S) =$$

$$\pi_k = \frac{1}{N}$$

$$\Pr(\text{subjects } k, k' \in \text{sample}, S) =$$

$$\pi_{k,k'} = \frac{1}{N} \times \frac{1}{N}.$$

$$\Pr(\text{subject } k \in \text{sample}, S) =$$

$$\pi_k = \frac{n}{N}$$

$$\Pr(\text{subjects } k, k' \in \text{sample}, S) =$$

$$\pi_{k,k'} = \frac{n}{N} \times \frac{n-1}{N-1}.$$

## Specifying the Design: `svydesign`

- `svydesign()` needs to know what columns in your data (if any) represent
  - sampling weights (`weights`)
  - strata (`strata`)
  - clusters (`ids`)
  - units
  - finite population correct (`fpc`)

```
library(survey)
data(api)
?api
?svydesign
```

## Specifying the Design: `svydesign`

- `apisrs$pw`: sampling weight
- `apisrs$fpc`: finite population correction, i.e.  $N$  for an SRS
- `apisrs$stype`: school type (elementary, middle, high)

```
table(apisrs$pw,  
      apisrs$fpc)
```

```
##  
##          6194  
##    30.97 200
```

**6194/200**

```
## [1] 30.97
```

## Specifying the Design: `svydesign`

- `apisrs$pw`: sampling weight
- `apisrs$fpc`: finite population correction, i.e.  $N$  for an SRS
- `apisrs$type`: school type (elementary, middle, high)

```
table(apisrs$pw,  
      apisrs$type)
```

```
##  
##          E    H    M  
##    30.97 142   25   33
```

## Specifying the Design: `svydesign`

```
srs_des <- svydesign(ids = ~1, weights = ~pw,  
                      fpc = ~fpc, data = apisrs)  
srs_des
```

```
## Independent Sampling design  
## svydesign(ids = ~1, weights = ~pw, fpc = ~fpc, data = apisrs)
```

# Systematic sampling

- Select every  $r^{th}$  sampling unit from the sampling frame of length  $N$ :  $r \times n \leq N < r \times (n + 1)$ 
  - What is  $\pi_k$  for individual  $k = r$ ?  $k = r + 1$ ?

# Systematic sampling

- Select every  $r^{th}$  sampling unit from the sampling frame of length  $N$ :  $r \times n \leq N < r \times (n + 1)$ 
  - What is  $\pi_k$  for individual  $k = r$ ?  $k = r + 1$ ?
  - Can a systematic sample be implemented so that it is the equivalent of an SRS?

## Systematic sampling

- Select every  $r^{th}$  sampling unit from the sampling frame of length  $N$ :  $r \times n \leq N < r \times (n + 1)$ 
  - What is  $\pi_k$  for individual  $k = r$ ?  $k = r + 1$ ?
  - Can a systematic sample be implemented so that it is the equivalent of an SRS?
  - What is  $\pi_{r,r+1}$ ?

# Systematic sampling

- Select every  $r^{th}$  sampling unit from the sampling frame of length  $N$ :  $r \times n \leq N < r \times (n + 1)$ 
  - What is  $\pi_k$  for individual  $k = r$ ?  $k = r + 1$ ?
  - Can a systematic sample be implemented so that it is the equivalent of an SRS?
  - What is  $\pi_{r,r+1}$ ?
- Random single start → what changes?

# Systematic sampling

- Select every  $r^{th}$  sampling unit from the sampling frame of length  $N$ :  $r \times n \leq N < r \times (n + 1)$ 
  - What is  $\pi_k$  for individual  $k = r$ ?  $k = r + 1$ ?
  - Can a systematic sample be implemented so that it is the equivalent of an SRS?
  - What is  $\pi_{r,r+1}$ ?
- Random single start  $\rightarrow$  what changes?
- Multiple starts
  - No individual sampling probabilities are 0 or 1
  - Joint sampling probabilities defined

## Stratified simple random sampling (strSRS)

- Consider  $h = 1, \dots, H$  strata from each of which you want to sample  $n_h$  individuals.

$$\Pr(\text{subject } k \in S_h) = \pi_k = \frac{n_h}{N_h}$$

$$\Pr(\text{subjects } k, k' \in S_h) = \pi_{k,k'} = \frac{n_h}{N_h} \times \frac{n_h - 1}{N_h - 1}$$

$$\Pr(\text{subjects } k \in S_h, k' \in S_{h'}) = \pi_{k,k'} = \frac{n_h}{N_h} \times \frac{n_{h'}}{N_{h'}}.$$

## strSRS, cont'd

- Why stratify? Why not an SRS or SRSWOR?

## strSRS, cont'd

- Why stratify? Why not an SRS or SRSWOR?
  - Availability of **sampling frame**
  - Cost, convenience, speed
  - $N_1, \dots, N_h$  vary widely
  - Rare outcomes within certain strata
  - We know strata are related to outcome of interest → precision gains!
- What happens if we ignore the stratification?
  - Waste a lot of folks' money!!
  - Implicit assumption that outcome of interest doesn't differ by strata
  - → obscure differences in outcomes by strata
  - → OVERESTIMATE variance/standard errors
  - → worsens variability in outcomes between strata grows and within strata shrinks
  - → worsens as variability in  $\pi_{k \in S_h}$  between strata grows

## Specifying the Design: `svydesign`

- `apisrs$pw`: sampling weight
- `apisrs$fpc`: finite population correction, i.e.  $N_h$  for an strSRS
- `apisrs$stype`: strata; chool type (elementary, middle, high)

```
table(apistrat$pw, apistrat$fpc)
```

```
##  
## 755 1018 4421  
## 15.1000003814697 50 0 0  
## 20.3600006103516 0 50 0  
## 44.2099990844727 0 0 100
```

755/50

```
## [1] 15.1
```

## Specifying the Design: `svydesign`

- `apisrs$pw`: sampling weight
- `apisrs$fpc`: finite population correction, i.e.  $N_h$  for an strSRS
- `apisrs$stype`: strata; chool type (elementary, middle, high)

```
table(apistrat$pw,  
      apistrat$stype)
```

```
##          E      H      M
## 15.1000003814697 0 50 0
## 20.3600006103516 0 0 50
## 44.20999990844727 100 0 0
```

## Specifying the Design: svydesign

```
strsrs_des <- svydesign(ids = ~1,  
                         strata = ~stype,  
                         weights = ~pw,  
                         fpc = ~fpc,  
                         data = apistrat)  
strsrs_des
```

```
## Stratified Independent Sampling design  
## svydesign(ids = ~1, strata = ~stype, weights = ~pw, fpc = ~fpc,  
##             data = apistrat)
```

## Cluster sampling

Consider sampling  $c = 1, \dots, C$  clusters or **primary sampling units (PSU)** from your population of  $N_C$  clusters and  $N$  **units**.

Individuals  $k$  are the **observation units** contained within clusters on which we will make measurements.

### One-stage cluster sampling

### Two-stage cluster sampling

Sample  $m_c$  from  $M_c$  units in cluster  $c$ .

$$\Pr(\text{PSU } c \in S) = \frac{C}{N_c}$$

$$\pi_{k \in S_c} = \begin{cases} 1, & \text{PSU } c \in S, \\ 0, & \text{otherwise.} \end{cases}$$

$$\Pr(\text{PSU } c \in S) = \frac{C}{N_c}$$

$$\pi_{k \in S_c} = \begin{cases} \frac{m_c}{M_c}, & \text{PSU } c \in S, \\ 0, & \text{otherwise.} \end{cases}$$

## Cluster sampling, cont'd

- Probability proportional to size (PPS) sampling
  - $\pi_c \propto M_c$
  - When does this make sense?
- Why implement a cluster sample?
  - The only sampling frame we have is a list of groups of observation units
  - Cost and convenience
- What happens if we ignore clustering in our sample?
  - The  $m_c$  observation units sampled in cluster  $c$  are **not** independent samples
  - → we have LESS information than  $m_c$  observations from an SRS
  - → we will UNDERESTIMATE variances and standard errors if we ignore this dependence
  - → this underestimation worsens as the correlation between outcomes from individuals in a cluster increases

## Specifying the Design: svydesign

```
clus_des <- svydesign(ids = ~dnum,  
                      weights = ~pw,  
                      fpc = ~fpc,  
                      data = apiclus1)  
clus_des
```

```
## 1 - level Cluster Sampling design  
## With (15) clusters.  
## svydesign(ids = ~dnum, weights = ~pw, fpc = ~fpc, data = apiclus1)
```

## Specifying the Design: `svydesign`

```
twoclus_des <- svydesign(ids = ~dnum + snum,  
                           weights = ~pw,  
                           fpc = ~fpc1 + fpc2,  
                           data = apiclus2)  
twoclus_des
```

```
## 2 - level Cluster Sampling design  
## With (40, 126) clusters.  
## svydesign(ids = ~dnum + snum, weights = ~pw, fpc = ~fpc1 + fpc2,  
##           data = apiclus2)
```

# Complex surveys

## Multi-stage sampling

- **Example:** DHS (among others) stratify clusters by administrative divisions × urban/rural → select women within households within clusters within strata
- **Stratified two-stage cluster sampling**
- PSUs → **secondary sampling units (SSUs)** → observation units
- One could stratify within clusters if a sampling frame necessitates (never encountered this yet)

## Multi-phase sampling

- Fancy term for trying again to reach non-respondents!!
- Sub-sample (perhaps fully) your nonrespondents in attempts to get a response.

## Designs of Common Surveys

- Demographic and Health Surveys (DHS)
  - <https://dhsprogram.com/>
  - Kenya DHS 2014 Final Report <https://dhsprogram.com/pubs/pdf/FR308/FR308.pdf>
- Youth Risk Behavior Survey (YRBS)
  - <https://www.cdc.gov/healthyyouth/data/yrbs/index.htm>
  - 2019 National YRBS Data User's Guide [https://www.cdc.gov/healthyyouth/data/yrbs/pdf/2019/2019\\_National\\_YRBS\\_Data\\_Users\\_Guide.pdf](https://www.cdc.gov/healthyyouth/data/yrbs/pdf/2019/2019_National_YRBS_Data_Users_Guide.pdf)
- American Community Survey (ACS)
  - <https://www.census.gov/programs-surveys/acs>
  - Design & Methodology [https://www2.census.gov/programs-surveys/acs/methodology/design\\_and\\_methodology/acs\\_design\\_methodology\\_ch04\\_2014.pdf](https://www2.census.gov/programs-surveys/acs/methodology/design_and_methodology/acs_design_methodology_ch04_2014.pdf)

Resources and Materials  
oooo

Why survey statistics?  
oooo

Survey Designs  
oooooooooooooooooooo

**Estimation with Survey Data**  
●oooooooooooooooooooo

Data Visualization  
ooooooo

Etc.  
oooo

## Estimation with Survey Data

## Horvitz-Thompson estimators

- Each individual  $k$  has their responses weighted by their **sampling weight**  $w_k = \frac{1}{\pi_k}$ 
  - i.e. an individual with low chance of being sampled  $\rightarrow \pi_k$  small  $\rightarrow w_k$  big
  - $w_k$  can be interpreted as number of individuals in the finite population that individual  $k$ 's response represents
  - **Caveat:** nonresponse
- **Average or arithmetic mean**

$$\begin{aligned}\frac{\sum_{k=1}^n y_k}{n} &\stackrel{?}{=} \frac{\sum_{k=1}^n w_k y_k}{\sum_{k=1}^n w_k} &= \frac{\sum_{k=1}^n \frac{N}{n} y_k}{\sum_{k=1}^n \frac{N}{n}} \\ &= \frac{\frac{N}{n} \sum_{k=1}^n y_k}{\frac{N}{n} \sum_{k=1}^n 1} &= \frac{N}{n} \left( \frac{\sum_{k=1}^n y_k}{\frac{N}{n} \times n} \right) \\ &= \frac{N}{n} \left( \frac{\sum_{k=1}^n y_k}{N} \right) &= \frac{\sum_{k=1}^n y_k}{n}\end{aligned}$$

# Horvitz-Thompson estimators

- Each individual  $k$  has their responses weighted by their **sampling weight**  $w_k = \frac{1}{\pi_k}$ 
  - i.e. an individual with low chance of being sampled  $\rightarrow \pi_k$  small  $\rightarrow w_k$  big
  - $w_k$  can be interpreted as number of individuals in the finite population that individual  $k$ 's response represents
  - **Caveat:** nonresponse
- **Weighted average**

$$\sum_{k=1}^n w_k y_k \text{ such that } w_k \in [0, 1] \text{ and } \sum_k w_k = 1$$

# Totals

- Consider a population of size  $N$ , a sample of size  $n$ , where each individual has outcome  $Y_k$
- $Y_k$  is **not** random, but  $Z_k$  is

$$Z_k = \begin{cases} 1, & k \in S \\ 0, & \text{otherwise.} \end{cases}$$

- Once sample taken  $y_k = Y_k \times Z_k$  denotes an individual's observed response (may contain measurement error)
  - $E[y_k] = E[Y_k \times Z_k] = Y_k E[Z_k] = Y_k \times \pi_k$

# Totals

- The population total of outcomes  $Y$  is

$$T = \sum_{k=1}^N Y_k$$

$$\hat{T} = \sum_{k=1}^n w_k y_k = \sum_{k=1}^n \frac{y_k}{\pi_k}$$

$$\widehat{Var}(\hat{T}) = \sum_{k,k'} \frac{y_k y_{k'}}{\pi_k \pi_{k'}} - \frac{y_k y_{k'}}{\pi_{kk'}}$$

## Totals: Stratified sampling

$$\hat{T} = \sum_{h=1}^H \hat{T}_h = \sum_{h=1}^H \sum_{k=1}^{n_h} w_{hk} y_{hk},$$

$$\widehat{Var}(\hat{T}) = \sum_{h=1}^H \widehat{Var}(\hat{T}_h) = \sum_{h=1}^H \sum_{k,k'} \frac{y_{hk} y_{hk'}}{\pi_{hk} \pi_{hk'}} - \frac{y_{hk} y_{hk'}}{\pi_{hkk'}},$$

- Calculate variance in terms of each individual's difference from their respective strata total.

## Totals: Cluster sampling

$$\hat{T} = \sum_{c=1}^C T_c = \sum_{c=1}^C \sum_{k=1}^{N_c} w_{ck} y_{ck} = \sum_{c=1}^C w_c \sum_{k=1}^{N_c} y_{ck},$$

- Calculate the variance in terms of each cluster total's difference from the overall population total

## Totals: Stratified two-stage cluster sampling

$$\hat{T} = \sum_{h=1}^H \hat{T}_h = \sum_{h=1}^H \sum_{c_1=1}^{C_{1h}} \hat{T}_{h[c_1]}$$

$$= \sum_{h=1}^H \sum_{c_1=1}^{C_{1h}} \sum_{c_2=1}^{C_{2h}} \hat{T}_{h[c_1:c_2]} = \sum_{h=1}^H \sum_{c_1=1}^{C_{1h}} \sum_{c_2=1}^{C_{2h}} \sum_{k=1}^{n_{c_2}} w_{h[c_1:c_2]k} y_{h[c_1:c_2]k}$$

$$\widehat{Var}(\hat{T}) = \sum_{h=1}^H \widehat{Var}(\hat{T}_h).$$

- Apply methods from previous two in appropriate summation order

## Totals: svytotal

```
?svytotal
svytotal(~enroll, design = srs_des)

##           total      SE
## enroll 3621074 169520

svytotal(~enroll, design = strsrs_des)

##           total      SE
## enroll 3687178 114642

svytotal(~enroll, design = twoclus_des, na.rm = TRUE)

##           total      SE
## enroll 2639273 799638
```

# Means

- The population mean of outcomes  $Y$  is

$$\bar{Y} = \frac{\sum_{k=1}^N Y_k}{N}$$

$$\hat{Y} = \frac{\sum_{k=1}^n w_k y_k}{N} = \frac{1}{N} \sum_{k=1}^n \frac{y_k}{\pi_k}$$

$$\widehat{Var}(\hat{Y}) = \frac{\widehat{Var}(\hat{T})}{N^2}$$

$$SRS \left(1 - \frac{n}{N}\right) \times \frac{1}{n} \sum_{k=1}^n (y_k - \bar{y})$$

## Means: svymean

```
?svymean  
svymean(~enroll, design = srs_des)
```

```
##           mean      SE  
## enroll 584.61 27.368
```

```
svymean(~enroll, design = strsrs_des)
```

```
##           mean      SE  
## enroll 595.28 18.509
```

```
svymean(~enroll, design = twoclus_des, na.rm = TRUE)
```

```
##           mean      SE  
## enroll 526.26 80.341
```

# Proportions

- The population mean of binary outcomes  $Y$  or **prevalence** is

$$P = \frac{\sum_{k=1}^N Y_k}{N}$$

$$\hat{P} = \frac{\sum_{k=1}^n w_k y_k}{N} = \frac{1}{N} \sum_{k=1}^n \frac{y_k}{\pi_k}$$

$$\widehat{Var}(\hat{P}) = \frac{(\hat{P}(1 - \hat{P}))}{N}$$

## Proportions: svyciprop

```
confint(svymean(~sch.wide, design = srs_des))
```

```
##                   2.5 %    97.5 %
## sch.wideNo  0.1319288 0.2380712
## sch.wideYes 0.7619288 0.8680712
```

```
svyciprop(~sch.wide, design = srs_des)
```

```
##                   2.5% 97.5%
## sch.wide 0.815 0.756 0.863
```

## Proportions: svyciprop

```
confint(svymean(~sch.wide, design = strsrs_des))
```

```
##                   2.5 %    97.5 %
## sch.wideNo  0.1243371 0.2197669
## sch.wideYes 0.7802331 0.8756629
```

```
svyciprop(~sch.wide, design = strsrs_des)
```

```
##                   2.5% 97.5%
## sch.wide 0.828 0.775 0.871
```

## Ratio Estimation

- What if we don't know  $N$  or don't have the finite population corrections?

$$\widehat{\bar{Y}} = \frac{\widehat{T}}{\widehat{N}} = \frac{\sum_k w_k y_k}{\sum_k w_k}$$

- Now what is  $\widehat{Var}(\widehat{\bar{Y}})$ ? survey uses Taylor linearization.
- What if we have some other variable  $X$  that we measured in our survey and know population totals for?

$$\widehat{T_Y} = \widehat{T_Y} \frac{T_X}{\widehat{T_X}} = \sum_k w_k y_k \times \frac{T_X}{\sum_k w_k x_k}$$

- If we're over(under)estimating  $T_X$ , then maybe we're over(under)estimating  $T_Y$

## Ratio Estimation: svyratio

```
srs_des_nofpc <- svydesign(ids = ~1, weights = ~pw,  
                           data = apisrs)
```

```
svymean(~enroll, design = srs_des)
```

```
##           mean      SE  
## enroll 584.61 27.368
```

```
svymean(~enroll, design = srs_des_nofpc)
```

```
##           mean      SE  
## enroll 584.61 27.821
```

```
strsrs_des_nofpc <- svydesign(ids = ~1,
                                strata = ~stype,
                                weights = ~pw,
                                data = apistrat)

svymean(~enroll, design = strsrs_des)
```

```
##           mean      SE
## enroll 595.28 18.509
```

```
svymean(~enroll, design = strsrs_des_nofpc)
```

```
##           mean      SE
## enroll 595.28 18.941
```

```
srs_des_nofpc <- update(srs_des_nofpc, counter = 1)
svyratio(numerator = ~enroll, denominator = ~counter, design = srs_des_nofpc)

## Ratio estimator: svyratio.survey.design2(numerator = ~enroll, denominator = ~counter, design = srs_des_nofpc)
## Ratios=
##       counter
## enroll 584.61
## SEs=
##       counter
## enroll 27.82121

svymean(~enroll, design = srs_des_nofpc)

##       mean      SE
## enroll 584.61 27.821
```

## Small Area Estimation: svyby

```
svyby(~enroll, by = ~stype, design = srs_des, svytotal)
```

```
##    stype    enroll        se
## E      E 1849900.0 99738.62
## H      H  890666.2 187717.67
## M      M  880508.1 151805.23
```

```
svyby(~enroll, by = ~stype, design = strsrs_des, svytotal)
```

```
##    stype    enroll        se
## E      E 1842584.3 72581.33
## H      H  997128.5 69239.40
## M      M  847464.7 55502.96
```

## General Linear Models: svyglm

```
srs_mod <- svyglm(sch.wide ~ ell + meals + mobility,  
                    design = srs_des, family = quasibinomial())  
strsrs_mod <- svyglm(sch.wide ~ ell + meals + mobility,  
                    design = strsrs_des, family = quasibinomial())
```

## General Linear Models: svyglm

```
coefs_table <- data.frame(SRS_Coef = coef(srs_mod),  
                           SRS_SE = SE(srs_mod),  
                           StrSRS_Coef = coef(strsrs_mod),  
                           StrSRS_SE = SE(strsrs_mod))  
round(coefs_table, digits = 3)  
  
##           SRS_Coef  SRS_SE StrSRS_Coef  StrSRS_SE  
## (Intercept)  1.744   0.456   0.836     0.456  
## ell        -0.022   0.011   -0.002     0.013  
## meals       0.011   0.009   -0.003     0.009  
## mobility   -0.015   0.022    0.061     0.032
```

## Post-stratification

What if we don't have a **probability survey**? OR What if our ideal stratification scheme was not possible to implement given our sampling frame?

```
pop.types <- apipop %>%
  group_by(stype) %>%
  summarize(Freq = n())
```

```
srs_post <- postStratify(srs_des, ~stype, pop.types)
```

Resources and Materials  
oooo

Why survey statistics?  
oooo

Survey Designs  
oooooooooooooooooooo

Estimation with Survey Data  
oooooooooooooooooooo

**Data Visualization**  
●oooooooooooo

Etc.  
oooo

## Data Visualization

## Functions in the survey package

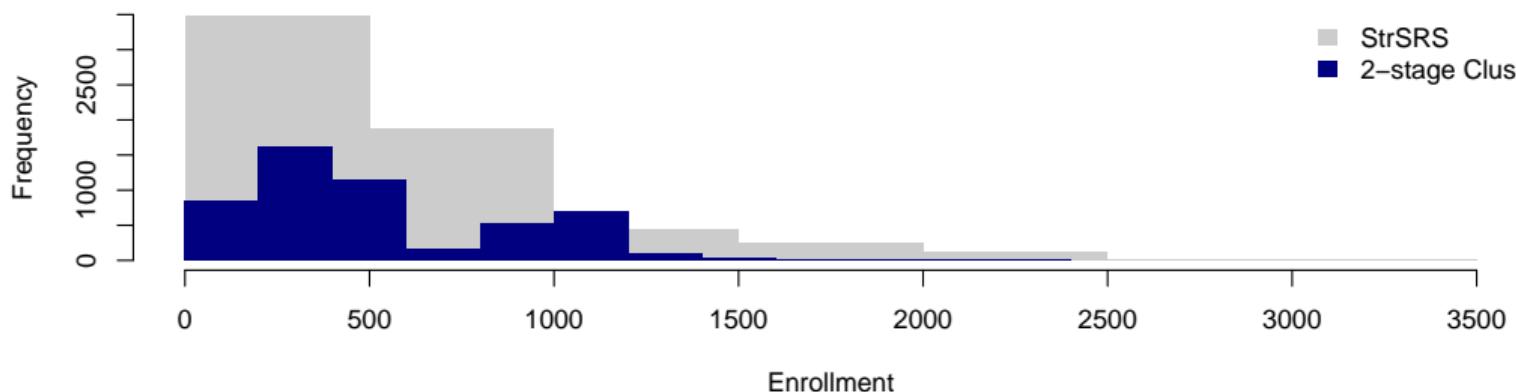
Instead of plotting the data in your sample, the following visualizations give you a sense of the data in your sample AND their relative contribution to the population.

- Histograms (`svyhist`) of weighted outcomes
- Boxplots (`svyboxplot`) of weighted outcomes (by group, if desired)
- Scatterplots (`svyplot`) of two variables showing relative weight of observations (e.g. with transparency or character size)
- Scatterplots by group (`svycoplot`) of two variables conditional on the value of other variables (e.g. binary measure of exposure) using the hexagonal binning method available in `svyplot`

## Histograms: svyhist

```
svyhist(~enroll, design = strsrs_des,
        main = "", xlab = "Enrollment",
        probability = FALSE, col = 'grey80', border = FALSE)
svyhist(~enroll, design = twoclus_des,
        main = "", xlab = "Enrollment",
        probability = FALSE, col = 'navy', border = FALSE, add = TRUE)
legend('topright', bty = 'n',
       fill = c("grey80", "navy"), border = FALSE,
       legend = c("StrSRS", "2-stage Clus"))
```

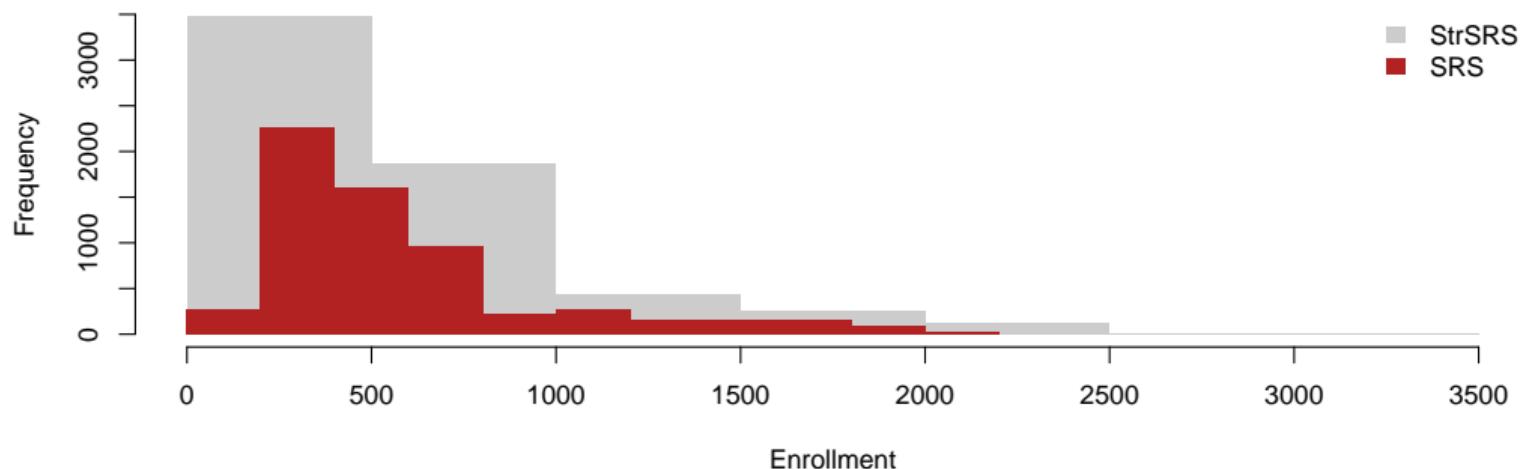
## Histograms: `svyhist`



## Histograms: svyhist

```
svyhist(~enroll, design = strsrs_des,
        main = "", xlab = "Enrollment",
        probability = FALSE, col = 'grey80', border = FALSE)
svyhist(~enroll, design = srs_des,
        main = "", xlab = "Enrollment",
        probability = FALSE, col = 'firebrick', border = FALSE,
        add = TRUE)
legend('topright', bty = 'n',
       fill = c("grey80", "firebrick"), border = FALSE,
       legend = c("StrSRS", "SRS"))
```

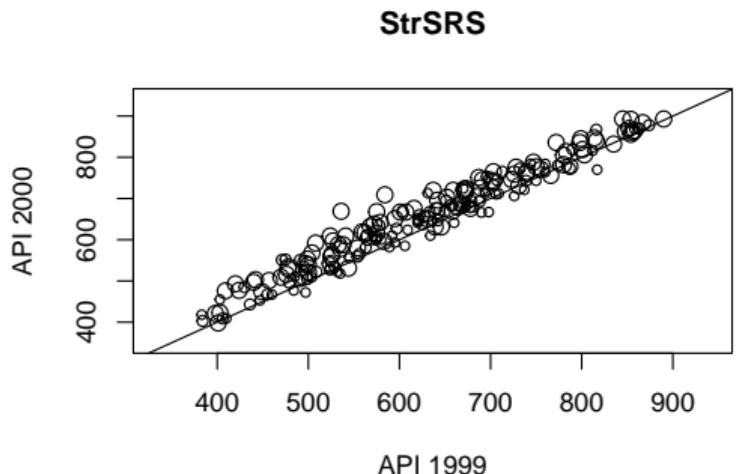
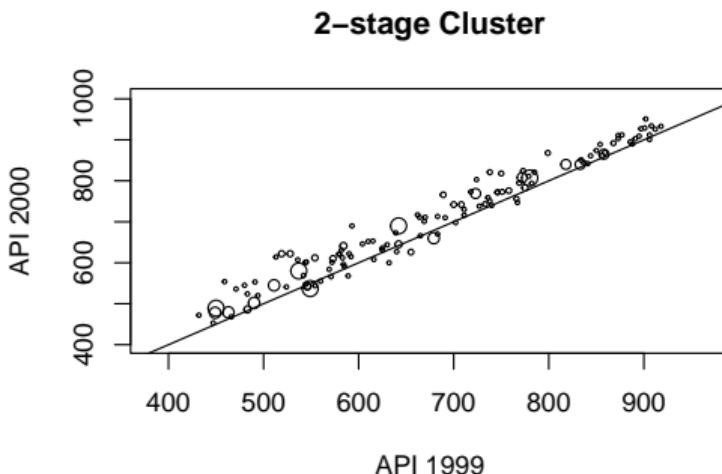
# Histograms: svyhist



## Scatterplots: svyplot

```
par(mfrow = c(1,2))
svyplot(api00~api99, design=strsrs_des, style="bubble",
        col = "firebrick",
        xlab = "API 1999", ylab = "API 2000", main = "StrSRS")
abline(0,1)
svyplot(api00~api99, design=twoclus_des, style="bubble",
        col = "firebrick",
        xlab = "API 1999", ylab = "API 2000", main = "2-stage Cluster")
abline(0,1)
```

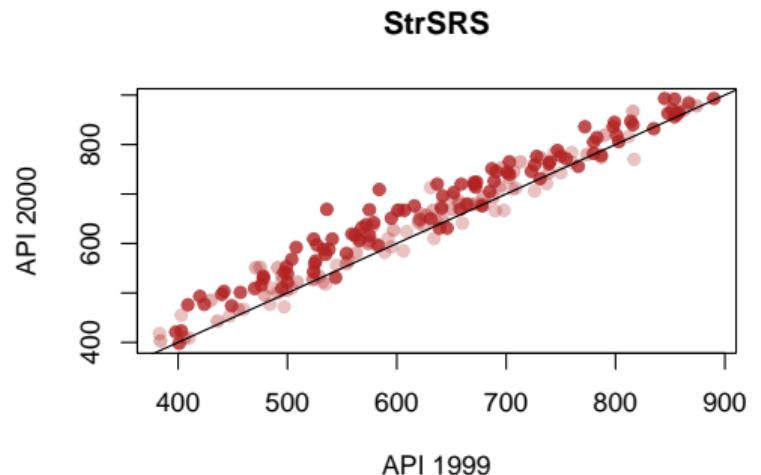
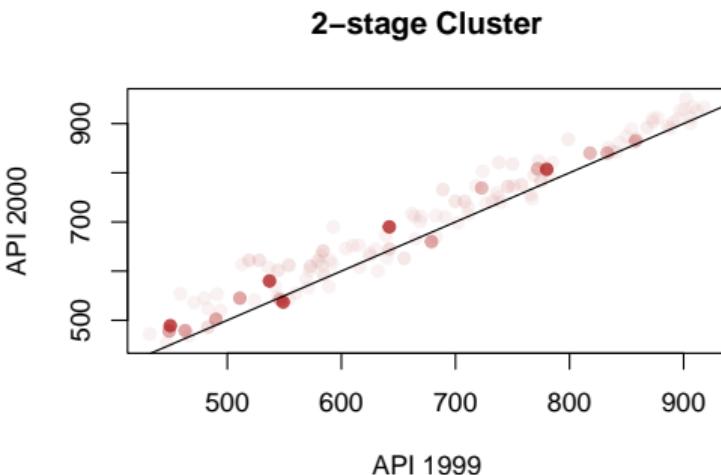
## Scatterplots: `svyplot`



## Scatterplots: svyplot

```
par(mfrow = c(1,2))
svyplot(api00~api99, design=strsrs_des, style="transparent",
        basecol = "firebrick", pch=19,
        xlab = "API 1999", ylab = "API 2000", main = "StrSRS")
abline(0,1)
svyplot(api00~api99, design=twoclus_des, style="transparent",
        basecol = "firebrick", pch=19,
        xlab = "API 1999", ylab = "API 2000", main = "2-stage Cluster")
abline(0,1)
```

# Scatterplots: `svyplot`



Resources and Materials  
oooo

Why survey statistics?  
oooo

Survey Designs  
oooooooooooooooooooo

Estimation with Survey Data  
oooooooooooooooooooo

Data Visualization  
ooooooo

Etc.  
●ooo

Etc.

## What didn't we cover?

- Post-stratification and raking (`survey::postStratify`)
- Replicate weights (`survey::svrepdesign`)
- Non-response
- Multi-phase sampling
- Model-based estimation

## Specific Question: Contrasts

- Contrasts are just linear combinations of random variables where the weights add up to 0, e.g. averages and differences.

$$E[aX + bY] = aE[X] + bE[Y]$$

$$E[X - Y] = 1 \times E[X] + (-1) \times E[Y]$$

$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y)$$

$$Var(X - Y) = 1^2 \times Var(X) + (-1)^2 \times Var(Y) + 2(1)(-1) \times Cov(X, Y)$$

## Specific Question: Contrasts

```
cont_total <- svytotal(~api00+api99, strata_des)
svycontrast(cont_total, list(diff=c(1,-1)))
```

```
##      contrast      SE
## diff    203736 12705
```

```
vcov(cont_total)
```

```
##            api00      api99
## api00 3396439386 3521991247
## api99 3521991247 3808949720
```

```
sqrt(vcov(cont_total)[1,1] + vcov(cont_total)[2,2] +
  2*1*(-1)*vcov(cont_total)[1,2])
```

```
## [1] 12704.59
```