Skip to content
CSDE News & Events

Wagenaar and Co-authors Identify Way to Assess the Quality of Health Data in Kenya

Posted: 10/26/2023 (CSDE Research)

CSDE Affiliate Bradley Wagenaar (Global Health, Epidemiology) and co-authors published their study “Development of novel composite data quality scores to evaluate facility-level data quality in electronic data in Kenya: a nationwide retrospective cohort study” in BMC Health Services Research. In this evaluation, authors aim to strengthen Routine Health Information Systems (RHIS) through the digitization of data quality assessment (DQA) processes. They leverage electronic data from the Kenya Health Information System (KHIS) which is based on the District Health Information System version 2 (DHIS2) to perform DQAs at scale. They provide a systematic guide to developing composite data quality scores and use these scores to assess data quality in Kenya.

Authors evaluated 187 HIV care facilities with electronic medical records across Kenya. Using quarterly, longitudinal KHIS data from January 2011 to June 2018 (total N = 30 quarters), they extracted indicators encompassing general HIV services including services to prevent mother-to-child transmission (PMTCT). They assessed the accuracy (the extent to which data were correct and free of error) of these data using three data-driven composite scores: 1) completeness score; 2) consistency score; and 3) discrepancy score. Completeness refers to the presence of the appropriate amount of data. Consistency refers to uniformity of data across multiple indicators. Discrepancy (measured on a Z-scale) refers to the degree of alignment (or lack thereof) of data with rules that defined the possible valid values for the data.

A total of 5,610 unique facility-quarters were extracted from KHIS. The mean completeness score was 61.1% [standard deviation (SD) = 27%]. The mean consistency score was 80% (SD = 16.4%). The mean discrepancy score was 0.07 (SD = 0.22). A strong and positive correlation was identified between the consistency score and discrepancy score (correlation coefficient = 0.77), whereas the correlation of either score with the completeness score was low with a correlation coefficient of -0.12 (with consistency score) and -0.36 (with discrepancy score). General HIV indicators were more complete, but less consistent, and less plausible than PMTCT indicators.

Authors observed a lack of correlation between the completeness score and the other two scores. As such, for a holistic DQA, completeness assessment should be paired with the measurement of either consistency or discrepancy to reflect distinct dimensions of data quality. Given the complexity of the discrepancy score, they recommend the simpler consistency score, since they were highly correlated. Routine use of composite scores on KHIS data could enhance efficiencies in DQA at scale as digitization of health information expands and could be applied to other health sectors beyond HIV clinics.

Read Full Article